Field relations and whole-rock geochemistry indicate that magma mixing has been important in the genesis of the late Mesozoic I-type igneous complexes at Pingtan and Tonglu in SE China. Morphological and trace-element studies of zircon populations in rocks from each of these complexes have defined several distinct growth stages [Mineral. Mag. (2001)]. In-situ LAM-MC-ICPMS microanalysis shows large variations in 176Hf/177Hf (up to 15 Hf units) between zircons of different growth stages within a single rock, and between zones within single zircon grains (up to 9 Hf units). These variations suggest that each of the observed magmas in both complexes developed through hybridisation of ≥2 magmas with different sources. Although this mixing has produced similar Sr and Nd isotopic compositions in the different rock types of each complex, the zircons have functioned as “tape recorders” and have preserved details of the assembly of the different magmas.
In the Tonglu complex the most primitive magma is a mafic monzonite (preserved as enclaves), whose isotopic composition suggests derivation from the lower crust; rhyodacites, rhyolites and quartz diorites reflect the mixing of the monzonite with ≥2 more felsic magmas, derived from older crustal materials. In the Pingtan complex, zircons in a quartz diorite enclave suggest mixing between a crustal magma and a more primitive mantle-derived component. Zircons from granites and granodiorite enclaves indicate mixing between the quartz diorite and more felsic melts with lower 176Hf/177Hf. Major changes in 176Hf/177Hf correlate with discontinuous changes in the trace-element composition and morphology of the zircons, in particular the development of sector zoning that suggests rapid disequilibrium crystallisation. We suggest that the magma mixing recorded by the changes in 176Hf/177Hf occurred during transport in magma conduits. The in-situ analysis of Hf-isotopic stratigraphy in zircons is a new and powerful tool for the detailed study of magma generation processes. 相似文献
准噶尔是新疆北部古生代造山带的重要组成部分,以广泛发育晚古生代后碰撞花岗岩为特征,是中亚造山带中显生宙陆壳生长作用非常显著的地区之一。根据新近获得的SHRIMP锆石U-Pb年龄,并参考已经发表的锆石U-Pb年龄,本文重新厘定了准噶尔晚古生代后碰撞深成岩浆活动的时限。按照最新的国际地质年表中石炭纪和二叠纪划分方案(Gradstein et a1.,2004),准噶尔后碰撞深成岩浆活动是从早石炭世中-晚维宪期开始、于早二叠世末期结束的。东准噶尔后碰撞深成岩浆活动发生在330-265Ma之间,而西准噶尔后碰撞深成岩浆活动的时限在340-275Ma之间,持续时间分别约65Ma。但是,在东准噶尔,后碰撞深成岩浆活动集中在330~310Ma和305~280Ma两个时段发生,而在西准噶尔,后碰撞深成岩浆活动的高峰发生在310~295Ma之间。准噶尔晚古生代后碰撞深成岩浆活动在空间上没有受到重要地质界线(如蛇绿岩带)的分隔控制,在有的地方花岗岩还可以侵位在蛇绿岩带之中。而晚古生代后碰撞深成岩浆活动不但在准噶尔分布广泛,而且在准噶尔北邻的阿尔泰造山带和南邻的天山造山带中均有出现,具有广泛的区域性。 相似文献