首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   5篇
地质学   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
为了解垃圾填埋场周边地下水环境污染状况,以长沙市固体废弃物处理场周边土壤、地下水及下游水库水质为研究对象,对研究区进行采样分析,采用单因子污染指数法和内梅罗污染综合指数法对该垃圾填埋场周边环境重金属含量特征进行分析与风险评价。结果表明:As、Cr(Ⅵ)、Ni、Pb、Zn、Cu重金属是填埋场周边环境中的主要污染物,区域采样点及下游水库中重金属含量均值低于地下水质量标准Ⅲ类,填埋场区污染状况良好;Cr(Ⅵ)含量在ZK1与R1样品中均高于地下水质量标准Ⅲ类,是填埋场周边地下水的主要风险污染物;ZK1~ZK4中土壤重金属元素以Pb、Cr(Ⅵ)富集为主,其达中度污染程度,应引起重视。  相似文献   
2.
徐蒙 《地质与勘探》2023,59(4):901-908
向地球深部进军是我国必须要解决的战略性科技问题,深部钻探是精准探测地球深部的直接手段。随着探测地球深度的增加,深部钻探工程面临着更加复杂的高温高压钻进环境,对高温钻井液的性能提出了更高的要求。近年来,高温钻井液取得了快速发展,国外的高温钻井液抗温能力已超过260℃,而国内高温钻井液技术也在加速发展,目前仍以“三磺”、“聚磺”体系为主,抗高温能力在240℃左右。本文在对比国内外高温水基钻井液进展的基础上,分析总结了国内外主流高温处理剂及高温水基钻井液的种类、功能与工程应用情况,探讨了其在工程应用中存在的问题以及未来的技术发展方向等。提出了未来国内深部钻探高温钻井液面临的关键问题及优先发展方向,主要有研制与优化耐260℃以上高温的处理剂与钻井液体系、开发配套耐高温仪器与系统、控制经济成本以及保护生态环境等方面,将为我国未来实施的万米深地钻探工程奠定技术基础。  相似文献   
3.
西藏地处青藏高原,地质构造复杂,新构造活动强烈。西藏境内蕴藏丰富的地热资源,已发现的地热资源储量居全国之首。青藏高原受南北向强烈挤压,构造活动频繁,随着地质应力的变化,产生了一系列构造带,西藏那曲观测区处于西藏北部的班公错—怒江深大断裂的次级构造带上,主要受控于一组近东西向的断裂和南北向断裂所构成的断裂带,据资料显示,观测区内新构造运动极为活跃,主要表现为深大断裂至今仍有继承性活动,为研究观测区深部电性结构,分析地热在观测区的空间分布特征及形成机理,共部署了3条大地电磁剖面。通过数据维性分析,揭示了观测区浅部主要呈现1D/2D构造,深部2D/3D构造明显,因此进行大地电磁数据2D和3D反演,同时获得观测区3km以浅2D和3D电性模型,十分必要,本文采用连续介质反演方法进行大地电磁法2D反演,采用REBOCC 3D反演代码进行3D反演,综合观测区水文地质调查结果,分析观测区2D和3D电性结构特征。研究结果表明,观测区2D地电结构横向电性梯度带为断层反映,纵向分层明显,高阻层间存在低阻层表明观测区深部地层构造复杂,观测区3D地电结构局部高阻体代表侵入岩活动范围,低阻区域反映了观测区地热的空间分布特征,观测区地热形成于次一级断裂,地热活动受断裂构造控制,由地表河流下渗形成。  相似文献   
4.
雷家蔚 《地质与勘探》2020,56(5):1080-1086
科学钻探深井结晶岩处在高地应力、高地层压力和高地温的“三高”环境中,自身的结构特征和物化特性会发生根本性变化,因温度变化引起的应力变化极易导致井壁失稳。本文依据温压耦合影响下坍塌压力和破裂压力计算模式,确定不同井壁温度下的安全钻井液密度窗口,通过FLAC3D开展温压耦合影响下井壁稳定数值模拟,分析在不同钻井液密度下井眼打开后不同时间的井壁周边温度和井壁稳定变化情况。结果表明:地层弹性参数对地层破裂压力的影响较大,对于花岗岩此类弹性模量较大的结晶岩,温度变化对破裂压力影响更大;井壁处附加应力受温度变化的影响程度:附加周向应力>附加径向应力>附加垂向应力;在最小主应力方向的井壁周边地层等效应力与钻井液密度呈正比关系,在最大主应力方向呈反比关系。  相似文献   
5.
金川Cu-Ni硫化物矿床地处龙首山隆起带内,是中国最大、世界第三的Cu-Ni硫化物矿床。半金属元素(Te、As、Bi、Sb、Se,TABS)作为形成铂族元素矿物(PGM)的重要元素,其分布过程的控制以及对矿石成因的指示作用缺乏研究。采用全岩亲铜元素分析、背散射观测等实验方法,对各矿区不同类型的矿石进行研究。结果显示:可利用亲铜元素比值与R因子(硅酸盐岩浆/硫化物)模拟金川Cu-Ni硫化物矿床硫化物的熔离过程,定量模拟示踪金川矿石的成矿作用,Cu/Te-Te与Bi/Pd-Bi模拟结果与Cu/Pd-Pd模拟结果一致。半金属元素如Te、Bi等也可用于铜镍硫化物矿床硫化物熔离过程的模拟;半金属元素也可以指示矿石成因,R因子定量模拟分析发现浸染状矿石由硫化物熔体较快速冷凝形成,网状矿石的形成经历了硫化物深部部分熔离作用,富铜矿石由富Bi、Cu的残余硫化物熔体经冷凝结晶作用形成。  相似文献   
6.
贵阳某地铁车站岩溶发育特征及突水模式分析   总被引:2,自引:1,他引:1  
岩溶可诱发基坑涌水、涌泥等灾害,给在富水岩溶区及断层破碎带区域施工的地铁工程带来诸多难题。因此,调查车站区域岩溶发育特征,分析突水模式,对车站基坑的设计和工程施工具有重要的指导作用。文章以贵阳某地铁车站深基坑岩溶涌水治理工程为背景,采用现场调查及理论分析相结合,借助三维地质模拟软件,对该地铁车站的岩溶发育特征和涌水条件进行系统分析,总结出基坑岩溶发育特征及涌水突水模式,建立了岩溶、断层破碎带与地铁车站空间关系的三维地质模型。对类似地铁车站岩溶水文地质勘察及涌水防治方案的设计和施工具有参考作用。   相似文献   
7.
湖南地区,尤其是湘中—湘南区域奥陶系烟溪组是我国新发现的页岩气勘探层位,该地层具有岩性变化大、有机碳含量高、成熟度高的特点。通过野外露头资料、钻井资料分析表明烟溪组岩性以硅质岩和碳质页岩为主,砂质页岩和砂岩次之。根据岩性、沉积构造以及纵向上岩石组合特征分析,认为烟溪组沉积相类型多样,包括深水盆地相、浅水盆地相、浅水陆棚相和浊积扇相等。研究表明:深水盆地相分布在湘南,浅水盆地和浅水陆棚相分布在湘中中部,而浊积扇相分布在湘中西北部、北部和东部等区域,沉积相的分布规律决定了烟溪组页岩气的勘探方向。横向上,湘南深水盆地硅质岩和碳质页岩TOC含量较低,而湘中浅水盆地相碳质页岩TOC含量高、厚度大,是烟溪组最有利的勘探区域;纵向上,烟溪组第三岩性段碳质页岩有机质丰度最高,脆性矿物含量高,是页岩气勘探的“甜点”层位。  相似文献   
8.
作为一种高效且准确的代理模型,克里金方法近年来被广泛用于边坡高效可靠度分析。然而,传统方法一般直接将克里金模型与蒙特卡洛模拟耦合进行可靠度分析,导致其在高维小失效概率的边坡可靠度计算中容易出现内存占用过大甚至溢出而无法求解的问题。为此,提出一种基于克里金代理模型的子集模拟方法,以高效解决小概率水平的边坡可靠度分析问题。该方法首先采用一定数量的样本校准克里金模型并进行精度验证,然后基于构建的模型开展子集模拟边坡可靠度计算。最后,采用一个单层粘性土坡与一个工程实例土坡验证所提方法的有效性,并研究回归模型、相关函数模型以及训练样本对该方法精度的影响。结果表明:(1)该方法可以有效计算边坡的失效概率,并且比传统方法更高效;(2)构建克里金模型时,采用10倍随机变量数的训练样本即可得到满足计算精度需求的模型,而额外增加训练样本对计算结果影响较小。  相似文献   
9.
王李昌 《地质与勘探》2020,56(1):163-172
大直径顶管穿越沙漠深部顶进阻力大、地层稳定性差、易垮塌、冒顶、护壁困难,砂层多夹有最大直径达4 cm的圆砾,管道最大埋深达50 m,国内外尚无顶管护壁浆液能有效稳定深部砂层降低顶进阻力。本文提出粘土-CMC聚合物浆液用作沙漠深部大直径顶管护壁,探讨浆液护壁及渗透机理,研究浆液性能随材料加量变化的关系,重点分析流变性、失水造壁性、润滑性的变化规律,得出浆液最优化配比。工程应用表明,该护壁浆液能有效稳定砂层,保护隧洞,降低顶进阻力,大直径顶管成功穿越沙漠深部,最大轴线偏差未超过50 mm,顶力未出现急速增长。  相似文献   
10.
邹艳红  黄望  阳宽达 《江苏地质》2017,41(3):384-393
杨赤中推估法是一种对空间域复合变量通过连续的几何滤波过程来建立核函数的最小二乘推估法,建模过程简便且能基于少量已知数据点取得好的建模效果。针对地质勘查中离散、稀疏而不规则分布的地质特征点数据难以构建地质体三维模型的难点问题,提出了一种基于杨赤中推估法的三维地质空间插值与模型建立的自动化方法。该方法首先以地质特征点数据库为基础,选用负幂指数函数模型建立适合三维地质空间插值的杨赤中推估法估值数学模型;在此基础上,构建一套基于杨赤中推估法的三维地质空间插值计算和地质体隐式建模的自动化实现流程与程序;最后以实例矿化插值数据为基础,采用基于移动立方体算法的三维隐式建模方法,快速构建实例矿体三维模型。与人工交互圈定地质体边界和进行矿体推断的三维地质显式建模相比,这种方法能快速直观地分析地质特征并处理样品分析数据,方法可行且高效。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号