首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15800篇
  免费   3530篇
  国内免费   2402篇
测绘学   2629篇
大气科学   947篇
地球物理   3151篇
地质学   11242篇
海洋学   1151篇
天文学   348篇
综合类   1124篇
自然地理   1140篇
  2024年   23篇
  2023年   182篇
  2022年   538篇
  2021年   697篇
  2020年   737篇
  2019年   576篇
  2018年   521篇
  2017年   772篇
  2016年   817篇
  2015年   782篇
  2014年   1113篇
  2013年   1220篇
  2012年   1032篇
  2011年   1036篇
  2010年   920篇
  2009年   1045篇
  2008年   1104篇
  2007年   1109篇
  2006年   1110篇
  2005年   980篇
  2004年   843篇
  2003年   660篇
  2002年   620篇
  2001年   526篇
  2000年   441篇
  1999年   437篇
  1998年   362篇
  1997年   303篇
  1996年   212篇
  1995年   219篇
  1994年   176篇
  1993年   166篇
  1992年   121篇
  1991年   87篇
  1990年   66篇
  1989年   48篇
  1988年   38篇
  1987年   20篇
  1986年   21篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1954年   5篇
  1900年   3篇
  1880年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The Kamieniec Metamorphic Belt comprises a volcano-sedimentary succession exposed within a collision zone between the Saxothuringian and Brunovistulian crustal domains of the European Variscides. The studied rocks recorded two metamorphic episodes. The first episode, M1, occurred at conditions of c. 485 ± 25 °C and 18 ± 1.8 kbar related to burial within a subduction zone. The subsequent episode, M2, was linked to the final phases of exhumation to mid-crustal level, associated with pressure and temperature (P–T) conditions ranging from c. 520 ± 26 °C and 6 ± 0.6 kbar through 555 ± 28 °C and 7 kbar ± 0.7 to ~590 ± 30 °C and 3–4 ± 0.4 kbar. The documented deformation record is ascribed to three events, D1 to D3, interpreted as related to the burial and subsequent exhumation of the Kamieniec Metamorphic Belt. The D1 event must have witnessed the subduction of the Kamieniec Metamorphic Belt rock succession whereas the D2 event was associated with the exhumation and folding of the Kamieniec Metamorphic Belt in an E-W-directed shortening regime. A subsequent folding related to the D2 event was initiated at HP conditions, however, the planar fabric produced during a late stage of the D2 event, defined by a low-pressure mineral assemblage M2, indicates that the D2 final stage was synchronous with the onset of the M2 episode. Consequently, the entire D2 event seems to have been associated with the exhumation of the Kamieniec Metamorphic Belt to mid crustal level. The third deformation event D3, synchronous with the M2 episode, marked the last stage of the exhumation, and was linked to emplacement of granitoid veins and lenses. The latter resulted in heating and rheological weakening of the entire rock succession and in the formation of non-coaxial shear zones.  相似文献   
2.
通过对SL3-1型双翻斗雨量传感器结构和工作原理进行分析,找出雨量传感器易发生故障现象、原因和维修方法,总结雨量传感器在校准过程中的注意事项和误差调节方法,供同行借鉴参考。  相似文献   
3.
Upland river systems in the UK are predicted to be prone to the effects of increased flood magnitudes and frequency, driven by climate change. It is clear from recent events that some headwater catchments can be very sensitive to large floods, activating the full sediment system, with implications for flood risk management further down the catchment. We provide a 15-year record of detailed morphological change on a 500-m reach of upland gravel-bed river, focusing upon the geomorphic response to an extreme event in 2007, and the recovery in the decade following. Through novel application of two-dimensional (2D) hydrodynamic modelling we evaluate the different energy states of pre- and post-flood morphologies of the river reach, exploring how energy state adjusts with recovery following the event. Following the 2007 flood, morphological adjustments resulted in changes to the shear stress population over the reach, resulting in higher shear stresses. Although the proportion of shear stresses in excess of those experienced using the pre-flood digital elevation model (DEM) varied over the recovery period, they remained substantially in excess of those experienced pre-2007, suggesting that there is still potential for enhanced bedload transport and morphological adjustment within the reach. Although volumetric change calculated from DEM differencing does indicate a reduction in erosion and deposition volumes in the decade following the flood, we argue that the system still has not fully recovered to the pre-flood state. We further argue that Thinhope Burn, and other similarly impacted catchments in upland environments, may not recover under the wet climatic phase currently being experienced. Hence systems like Thinhope Burn will continue to deliver large volumes of sediment further down river catchments, providing new challenges for flood risk management into the future.  相似文献   
4.
Houfangzi graphite deposit is located in the middle of the graphite metallogenic belt in the northern margin of North China Block in Hebei Province, which belongs to regional metamorphic type graphite deposit. In this paper, through rock-mineral determination, IP ladder sections and exploratory trench survey, the authors have discussed its metallogenic geological characteristics and ore body characteristics, and analyzed its ore genesis. The research results show that the ore bodies are mainly in the graphitic marble of Dongjingzi Formation of Hongqiyingzi Group, which are stratified and controlled by layers, with NE trend and NNW inclination. The IP anomaly shows that Houfangzi graphite deposit is characterized by low resistance and high polarization. Ore bodies are stable and of big scale, and their fixed carbon content ranges from 1.42% to 3.28%, which has the potential to be a large graphite deposit. The ore-forming material came from granulite and graphite marble, while the regional metamorphism is the main mineralization of Houfangzi graphite deposit, with the enrichment and increasement caused by late magmatic activity and migmatization.  相似文献   
5.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   
6.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
7.
A novel low-cost friction sliding system for bidirectional excitation is developed to improve the seismic performance of reinforced concrete (RC) bridge piers. The sliding system is a spherical prototype developed by combining a central flat surface with an inclined spherical segment, characterized by stable oscillation and a large reduction in response accelerations on the flat surface. The inclined part provides a restoring force that limits the residual displacements of the system. Conventional steel and concrete are employed to construct a flat-inclined spherical surface atop an RC pier. The seismic forces are dissipated through the frictions generated during the sliding movements; hence, the seismic resilience of bridges can be ensured with a low-cost design solution. The proposed system is fabricated utilizing a mold created by a three-dimensional printer, which facilitates the use of conventional concrete to construct spherical shapes. The concrete surface is lubricated with a resin material to prevent abrasion from multiple input ground motions. To demonstrate the effectiveness of the system, bidirectional shaking table tests are conducted in the longitudinal and transverse directions of a scaled bridge model. The effect of the inclination angle and the flat surface size is investigated. The results demonstrate a large decrease in response acceleration when the system exhibits circular sliding displacement. Furthermore, the inclination angle that generates the smallest residual displacement is identified experimentally.  相似文献   
8.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
9.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
10.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号