首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2496篇
  免费   688篇
  国内免费   356篇
测绘学   128篇
大气科学   761篇
地球物理   824篇
地质学   997篇
海洋学   220篇
天文学   40篇
综合类   126篇
自然地理   444篇
  2024年   4篇
  2023年   28篇
  2022年   45篇
  2021年   87篇
  2020年   116篇
  2019年   113篇
  2018年   77篇
  2017年   108篇
  2016年   118篇
  2015年   103篇
  2014年   133篇
  2013年   245篇
  2012年   130篇
  2011年   129篇
  2010年   106篇
  2009年   148篇
  2008年   138篇
  2007年   195篇
  2006年   164篇
  2005年   158篇
  2004年   156篇
  2003年   163篇
  2002年   116篇
  2001年   119篇
  2000年   94篇
  1999年   84篇
  1998年   87篇
  1997年   75篇
  1996年   70篇
  1995年   47篇
  1994年   50篇
  1993年   44篇
  1992年   28篇
  1991年   9篇
  1990年   24篇
  1989年   12篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有3540条查询结果,搜索用时 15 毫秒
1.
黄河干流内蒙古段河道冬季流凌封河期, 河道水量除一部分转化为冰量外, 很大一部分转化为槽蓄水量而贮存在河道中, 导致下游头道拐河段出现小流量过程, 上游河道流量转化为槽蓄水量和贮存的冰量越大, 小流量持续时间越长, 开河期发生凌汛洪水风险越高。通过对1998 - 2016年头道拐站凌讯期流量变化过程分析, 重新界定了小流量上限阈值为330 m3·s-1, 并且以此值为标准进行小流量过程研究, 分别采用R/S极差分析法、 Fourier变换分析法对近年来小流量过程变化特征进行分析; 结合非线性概率Logit模型和Probit模型对小流量过程的影响因素进行讨论。结果表明: 小流量持续天数变化呈现缩短趋势; 同时, 小流量过程与上游相对来水之间变化关系显著且过程同步, 而滞后于河道槽蓄水量变化过程; 通过Logit模型和Probit模型分析各影响因素变化时相应小流量持续时间变化的响应概率大小, 明确河道冰流量是小流量过程第一影响因素, 气温条件是小流量过程的决定因素, 首封位置和相对来水量是小流量过程重要影响因素。  相似文献   
2.
洪水影响预报和风险预警理念与业务实践   总被引:2,自引:0,他引:2       下载免费PDF全文
刘志雨 《水文》2020,40(1):1-6
我国是世界上洪涝灾害频繁而严重的国家之一,洪水预报预警是防汛减灾工作中重要的非工程措施和洪水防御工作的耳目和参谋。从水文行业的视角,回顾了近年来我国洪水预报预警技术与业务进展,分析了当前洪水预报预警工作面临的新形势和新要求,对比国内外同类行业发展查找了存在的差距,阐述了洪水影响预报和风险预警的定义和理念,从顶层对基于影响预报和风险预警的新一代洪水预报预警系统("国家洪水预报预警系统")总体框架进行了研究和设计,一些关键技术成果在大范围洪水早期预警业务实践中得到了探索应用,取得了较好的效果。  相似文献   
3.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
4.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
5.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   
6.
Better understanding of which processes generate floods in a catchment can improve flood frequency analysis and potentially climate change impacts assessment. However, current flood classification methods are either not transferable across locations or do not provide event-based information. We therefore developed a location-independent, event-based flood classification methodology that is applicable in different climates and returns a classification of all flood events, including extreme ones. We use precipitation time series and very simply modelled soil moisture and snowmelt as inputs for a decision tree. A total of 113,635 events in 4155 catchments worldwide were classified into one of five hydro-climatological flood generating processes: short rain, long rain, excess rainfall, snowmelt and a combination of rain and snow. The new classification was tested for its robustness and evaluated with available information; these two tests are often lacking in current flood classification approaches. According to the evaluation, the classification is mostly successful and indicates excess rainfall as the most common dominant process. However, the dominant process is not very informative in most catchments, as there is a high at-site variability in flood generating processes. This is particularly relevant for the estimation of extreme floods which diverge from their usual flood generation pattern, especially in the United Kingdom, Northern France, Southeastern United States, and India.  相似文献   
7.
地震油气储层的小样本卷积神经网络学习与预测   总被引:2,自引:0,他引:2       下载免费PDF全文
地震储层预测是油气勘探的重要组成部分,但完成该项工作往往需要经历多个环节,而多工序或长周期的研究分析降低了勘探效率.基于油气藏分布规律及其在地震响应上所具有的特点,本文引入卷积神经网络深度学习方法,用于智能提取、分类并识别地震油气特征.卷积神经网络所具有的强适用性、强泛化能力,使之可以在小样本条件下,对未解释地震数据体进行全局优化提取特征并加以分类,即利用有限的已知含油气井段信息构建卷积核,以地震数据为驱动,借助卷积神经网络提取、识别蕴藏其中的地震油气特征.将本方案应用于模型数据及实际数据的验算,取得了预期效果.通过与实际钻井信息及基于多波地震数据机器学习所预测结果对比,本方案利用实际数据所演算结果与实际情况有较高的吻合度.表明本方案具有一定的可行性,为缩短相关环节的周期提供了一种新的途径.  相似文献   
8.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   
9.
FluBiDi is a two-dimensional model created to simulate real events that can take days and months, as well as short events (minutes or hours) and inclusive laboratory tests. To verify the robustness of FluBiDi, it was tested using a previous study with both designed and real digital elevation models. The results highlight good agreement between the models (i.e. Mike Flood, SOBEK, ISIS 2D, and others) tested and FluBiDi (around 90% for a specific instant and 95% for the complete time simulation). In the simulated hydrographs, the discharge peak value, time to peak, and water level results were accurate, reproducing them with an error of less than 5%. The velocity differences observed in a couple of tests in FluBiDi were associated with very short periods of time (seconds). However, FluBiDi is highly accurate for simulating floods under real topographical conditions with differences of around 2 cm when water depth is around 150 cm. The average water depth and velocities are precise, and the model describes with high accuracy the pattern and extent of floods. FluBiDi has the capability to be adjusted to different types of events and only requires limited input data.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号