首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   16篇
  国内免费   47篇
地球物理   23篇
地质学   132篇
综合类   2篇
自然地理   2篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   18篇
  2012年   6篇
  2011年   11篇
  2010年   3篇
  2009年   5篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
排序方式: 共有159条查询结果,搜索用时 46 毫秒
1.
碧口地块北缘下中泥盆统踏坡组的物源长期被认为来自碧口地块新元古界基底——碧口岩群,但一直缺少碎屑锆石物源数据的支持。本文对略阳地区泥盆系踏坡组不同层位的3个碎屑岩样品开展了系统的岩石学、锆石岩相学及其U-Pb定年和微量元素组成研究。锆石晶体特征对比分析显示,研究样品存在两种类型的锆石:普遍发育变质增生边的碎屑锆石(剖面北段样品)和不发育变质增生边的典型岩浆成因的碎屑锆石(剖面南、中段样品)。前者显示2个年龄峰值(~2.5 Ga主峰、~2.0 Ga次峰),还形成了2473±24 Ma的上交点年龄和359±84 Ma的下交点年龄,而后者两个样品有着一致的年龄峰值(~2.0 Ga主峰、~2.5 Ga次峰和~1.39 Ga微小峰值)。3个样品的谐和年龄均大于1.3 Ga,并不能限定踏坡组的沉积时代,且均不支持其物源主要来自碧口岩群的传统认识。碎屑锆石地球化学判别图解指示它们的源岩主要为形成于造山带环境中的花岗岩类(花岗闪长岩和英云闪长岩)、基性岩和钾镁煌斑岩。基于样品中的岩屑类型,结合区域地质、古流向、锆石年龄对比和源岩判别,认为踏坡组的原始物源来自位于扬子板块北缘的太古宙—古元古代基底(鱼洞子杂岩和崆岭杂岩),并且鱼洞子杂岩在踏坡组沉积后期曾大面积出露/抬升。同时表明碧口地块可能至少在早中泥盆世就与扬子板块拼合在一起了。  相似文献   
2.
In the Cleaverville area of Western Australia, the Regal, Dixon Island, and Cleaverville Formations preserve a Mesoarchean lower‐greenschist‐facies volcano‐sedimentary succession in the coastal Pilbara Terrane. These formations are distributed in a rhomboidal‐shaped area and are unconformably overlain by two narrowly distributed shallow‐marine sedimentary sequences: the Sixty‐Six Hill and Forty‐Four Hill Members of the Lizard Hills Formation. The former member is preserved within the core of the Cleaverville Syncline and the latter formed along the northeast‐trending Eighty‐Seven Fault. Based on the metamorphic grade and structures, two deformation events are recognized: D1 resulted in folding caused by a collisional event, and D2 resulted in regional sinistral strike‐slip deformation. A previous study reported that the Cleaverville Formation was deposited at 3020 Ma, after the Prinsep Orogeny (3070–3050 Ma). Our SHRIMP U–Pb zircon ages show that: (i) graded volcaniclastic–felsic tuff within the black shale sequence below the banded iron formation in the Cleaverville Formation yields an age of (3 114 ±14) Ma; (ii) the youngest zircons in sandstones of the Sixty‐Six Hill Member, which unconformably overlies pillow basalt of the Regal Formation, yield ages of 3090–3060 Ma; and (iii) zircons in sandstones of the Forty‐Four Hill Member show two age peaks at 3270 Ma and 3020 Ma. In this way, the Cleaverville Formation was deposited at 3114–3060 Ma and was deformed at 3070–3050 Ma (D1). Depositional age of the Cleaverville Formation is at least 40–90 Myr older than that proposed in previous studies and pre‐dates the Prinsep Orogeny (3070–3050 Ma). After 3020 Ma, D2 resulted in the formation of a regional strike‐slip pull‐apart basin in the Cleaverville area. The lower‐greenschist‐facies volcano‐sedimentary rocks are distributed only within this basin structure. This strike‐slip deformation was synchronous with crustal‐scale sinistral shear deformation (3000–2930 Ma) in the Pilbara region.  相似文献   
3.
We report new zircon U–Pb age, Hf isotopic, and major and trace element data for rhyolites from the Duolong Ore Concentration Area of the Southern Qiangtang Terrane. Building on previous studies, we constrain the tectonic setting and propose a model to explain the geodynamics and crustal growth during regional magmatism in the Early Cretaceous. The analysed rhyolites yield laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages of 115 and 118 Ma. The rocks are K-rich (K2O = 6.66–9.93 wt.%; K2O/Na2O = 8.2–19.7 wt.%), alkaline and peraluminous (A/CNK = 1.02–1.46), and are characterized by high SiO2 contents (72.8–78.8 wt.%) similar to highly fractionated I-type granites. Fractionation of Fe–Ti oxides, plagioclase, hornblende, Ti-bearing phases, apatite, monazite, allanite and zircon contributed to the variations in major and trace element chemistry. High K2O contents are likely due to partial melting of the continental crust. The samples have positive zircon εHf(t) values ranging from +7.1 to +11.2. These features, together with young zircon Hf crustal model ages of 489–721 Ma, indicate that the K-rich rhyolites were derived from juvenile lower crust with an input of a mantle-derived component. We suggest that the Early Cretaceous K-rich rhyolites formed in a continental arc setting during northward subduction of Bangong Co–Nujiang oceanic lithosphere. Basaltic magma underplating was responsible for vertical crustal growth, triggered by slab roll-back in the Duolong Ore Concentration Area in the Early Cretaceous.  相似文献   
4.
尾亚—天湖地区位于新疆中亚造山带东南部的中天山地块内,晚古生代—中生代岩浆活动强烈,产出了战略性关键矿产尾亚钒铁磁铁矿。在详细岩相学观察的基础上,对尾亚、天湖和沙泉子南岩体中的角闪石和黑云母进行了电子探针(EMPA)测试分析,限定了3个岩体结晶的温压条件、氧逸度、含水量和含铁指数等要素,为解析中天山地块的岩浆-成矿物化条件及其区域找矿勘查工作提供参考。测试结果表明,该区花岗岩类中的角闪石富镁、钙、钠,贫钾,属于钙角闪石族;黑云母有高镁、钛、铝、钾和低硅、钠的特征为镁质黑云母。角闪石和黑云母的化学成分揭示其寄主岩浆为钙碱性造山带岩系,具有壳幔混源的特征,推测可能是板块俯冲背景下由地幔楔与大陆地壳物质混熔形成。根据角闪石-黑云母矿物温压计,估算出沙泉子南石英闪长岩的结晶温度为651~753 ℃,压力为31~79 MPa,尾亚二长花岗岩和钾长花岗岩的结晶温度为762~833 ℃,压力为85~215 MPa,天湖花岗闪长岩的结晶温度为668~812 ℃,压力为31~117 MPa。3个岩体岩浆结晶时的氧逸度lgf(O2)范围为-15.7~-9.4,而且在角闪石结晶时岩浆具有较高的含水量。综合分析,认为该区的花岗岩类具有高温、低压、高氧逸度、富水和高含铁指数的特点,有利于Fe等成矿元素在流体中富集,具有良好的铁矿成矿条件。进一步利用角闪石-黑云母压力计,计算了花岗岩类岩体的侵位深度,从而估算出岩体的剥蚀程度处于2.2~5.5 km,且区域的隆升剥蚀量差异明显;结合现有的矿产地表展布特征,推测天湖岩体一带深部仍具有较好的铁矿找矿潜力。  相似文献   
5.
朱文斌  王玺  葛荣峰 《地质学报》2021,95(1):124-138
地体构造是对板块构造理论的发展和补充,它受控于全球板块动力学体系,因此不能将地体与板块割裂开来去研究。其相对于刚性板块的小规模、多样性和广泛性,对了解全球板块的离散和大陆的拼贴增生过程具有十分重要意义。地体构造无处不在,它不仅存在于中、新生代陆缘造山带中,也存在于古老造山带中,一些古老的克拉通实际上也是由不同的地体拼合而成的。地体的运动包括聚合、离散和走滑三种方式,地体的增生作用是聚合的主要表现形式,并导致大陆的生长扩大,而地体的离散作用联合增生作用,决定了现代大陆的轮廓。分析地体聚合和离散的过程,可以发现有两种不同的模式,即单向聚合-离散和多向聚合-离散,它们对应了不同的地球动力学过程。地体的单向聚合-离散可以由大洋的俯冲增生或大陆汇聚碰撞而导致,但在这个过程中,大洋向大陆的单向俯冲起到了主导作用。地体的多向离散和聚合与岩石圈的裂解与汇聚有密切联系,从全球构造演化的格局来看,岩石圈裂解与汇聚的方向本身具有多向性,这就导致了一些微陆块地体与具洋壳性质的地体一同发生多向离散和聚合。地体的单向离散和聚合会因构造变动而转变为多向离散和聚合,俯冲板片回转与海沟后撤会导致俯冲带弯曲和俯冲方向的改变,这是引起上述转变的原因。  相似文献   
6.
青藏高原岩石圈三维电性结构   总被引:3,自引:0,他引:3       下载免费PDF全文
本文报道通过综合大地电磁调查数据研究青藏高原岩石圈三维电阻率模型的初步成果.大地电磁法调查区域已经覆盖了高原大部分面积,为全区三维电阻率成像研究打下了可靠的基础.对多个测区大地电磁数据进行精细的同化处理和反演成像,取得了青藏高原可靠的岩石圈三维电阻率结构图像.成像的区域为28°N—35°N,80°E—104°E.三维反演计算时采用的网格尺寸为20km×20km,垂直方向不等间距剖分为26层.结果表明,青藏高原现今岩石圈电阻率扰动主要反映印度克拉通对亚欧大陆板块俯冲引起的热流体运动和大陆碰撞和拆离产生的构造.在岩石圈地幔,察隅地块、喜马拉雅地块和拉萨地块东部联成统一的高电阻率地块,它们反映了向北东俯冲的印度克拉通.雅鲁藏布江、班公—怒江和金沙江缝合带都有明显的低电阻率异常,表明岩石圈深处有热流体活动.雅鲁藏布江、班公—怒江和金沙江缝合带都有明显的低电阻率异常,也表明它们的岩石圈还有流体活动.青藏高原东部的低阻区沿100°E向地幔下方扩大,反映了金沙江断裂带有切穿岩石圈的趋势.地幔电阻率平面扰动的模式显示,青藏高原东西部的地体碰撞拼合形式和方向是不同的.在青藏高原西部,羌塘、拉萨和喜马拉雅等地体从北到南碰撞拼合.在青藏高原东部,羌塘—拉萨、察隅、印支、雅安和扬子等地体多方向拆离拼合,在地壳造成不正交的拆离带和压扭构造系.从高阻-低阻区的分布看,东部的地体拼合有地幔的根源,今后还会进一步发展.察隅地块岩石圈对青藏高原东部的楔入,使其北部和东部地块的岩石圈发生拆离撕裂,也造成热流体上涌的低电阻率异常.  相似文献   
7.
胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化   总被引:4,自引:4,他引:0  
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2015,31(10):2942-2958
早前寒武纪重大岩浆事件是早期陆壳增生及演化的主要地质作用。本文通过系统总结最近几年胶北地体早前寒武纪重大岩浆事件代表性岩石的岩相学、锆石U-Pb年代学、岩石地球化学及锆石Hf同位素研究的最新成果,厘定出太古宙~2.9Ga、2.7Ga及2.5Ga三期以TTGs岩浆事件为代表的陆壳增生事件。这些TTGs具有典型太古宙高铝TTGs的地球化学特征及正的εHf(t)值,锆石Hf模式年龄主要集中在ca.3.2~2.7Ga。两种不同的构造模式被用来理解胶北太古宙TTGs(陆壳)的成因:(1)加厚基性下地壳的部分熔融;(2)俯冲洋壳的部分熔融。根据胶北TTGs在时间上呈事件性侵位,空间上呈面状分布,以及相对较低的Mg#、Cr及Ni含量,前者可能更适合胶北TTGs的成因。确定了胶北古元古代2.2~2.0Ga黑云母/角闪石二长花岗片麻岩及~1.8Ga以二长(正长)花岗岩为代表的多期陆壳重熔事件。综合这些研究结果,初步总结出胶北早前寒武纪陆壳形成及演化历史:1)2.9Ga,主要为基性地壳(洋壳)的增生,并可能存在规模有限的、被剥蚀殆尽的太古宙早期陆壳;2)在~2.9Ga、~2.7Ga及~2.5Ga,由于地幔(热)柱上涌,ca.3.3~2.7Ga新生的加厚基性玄武质下地壳发生事件性部分熔融,并伴随有早期陆壳的重熔,形成主要由TTGs及少量陆壳重熔型(高钾)花岗岩组成的太古宙陆壳;3)ca.2.2~2.0Ga,可能由于地幔物质上涌,陆壳伸展,形成裂谷,陆壳物质重熔,形成ca.2.2~2.0Ga花岗质岩石;4)ca.1.95~1.85Ga,发生强烈的挤压碰撞构造作用,裂谷闭合,卷入挤压作用的物质发生高角闪岩相到高压麻粒岩相变质;5)~1.8Ga,地幔物质上涌,陆壳伸展减薄,陆壳物质重熔,形成~1.8Ga花岗岩。  相似文献   
8.

In its type area around Narooma, the Narooma Terrane in the Lachlan Orogen comprises the Wagonga Group, which consists of the Narooma Chert overlain by the argillaceous Bogolo Formation. Conodonts indicate that the lower, largely massive (ribbon chert) part of the Narooma Chert ranges in age from mid-Late Cambrian to Darriwilian-Gisbornian (late Middle to early Late Ordovician). The upper Narooma Chert consists of shale, containing Eastonian (Late Ordovician) graptolites, interbedded with chert. Where not deformed by later faulting, the boundary between the Narooma Chert and Bogolo Formation is gradational. At map scale, the Narooma Terrane consists of a stack of imbricate thrust slices caught between two thrust faults that juxtaposed the terrane against the coeval Adaminaby Superterrane in Early Silurian time. These slices are best defined where Narooma Chert is thrust over Bogolo Formation. The soles of such slices contain multiply foliated chert. Late extensional shear bands indicate a strike-slip component to the faulting. The Narooma Terrane, with chert overlain by muddy ooze, is interpreted to be an oceanic terrane that accumulated remote from land for ~50 million years. The upward increase in the terrigenous component at the top of the Wagonga Group (shale, argillite, siltstone and sandstone of the upper Narooma Chert and Bogolo Formation) records approach of the terrane to the Australian sector of the Gondwana margin. Blocks of chert, argillite and sandstone reflect extensional/strike-slip disruption of the terrane as it approached the transform trench along the Gondwana-proto-Pacific plate boundary. Blocks of basalt and basalt breccia represent detritus from a seamount that was also entering the trench. There is no evidence that the Narooma Terrane or the adjacent Adaminaby Group formed in an accretionary prism/ subduction complex.  相似文献   
9.
Geological studies indicate that the southeastern Sanandaj–Sirjan Zone, located in the southeastern Zagros Orogenic Belt, is subdivided transversally into the Esfahan–Sirjan Block with typical Central Iranian stratigraphic features and the Shahrekord–Dehsard Terrane consisting of Paleozoic and Lower Mesozoic metamorphic rocks. The Main Deep Fault (Abadeh Fault) is a major lithospheric fault separating the two parts. The purpose of this paper is to clarify the role of the southeastern Sanandaj–Sirjan Zone in the tectonic evolution of the southeastern Zagros Orogenic Belt on the basis of geological evidence. The new model implies that Neo‐Tethys 1 came into being when the Central Iran Microcontinent split from the northeastern margin of Gondwana during the Late Carboniferous to Early Permian. During the Late Triassic a new spreading ridge, Neo‐Tethys 2, was created to separate the Shahrekord–Dehsard Terrane from Afro–Arabian Plate. The Zagros sedimentary basin was formed on a continental passive margin, southwest of Neo‐Tethys 2. The two ophiolitic belts of Naien–Shahrebabak–Baft and Neyriz were developed to the northeast of Neo‐Tethys 1 and southwest of Neo‐Tethys 2 respectively, related to the sinking of the lithosphere of the Neo‐Tethys 1 in the Late Cretaceous. It can be concluded that deposition of the Paleocene conglomerate on the Central Iran Microcontinent and Pliocene conglomerate in the Zagros Sedimentary Basin is directly linked to the uplift generated by collision.  相似文献   
10.
The Linzizong Group (64–44 Ma) of the Lhasa Terrane in Tibet is critically positioned for establishing the paleoposition of the southern leading edge of the Asian continent during Paleogene times and constraining onset of the India–Asia collision. Here we report paleomagnetic results from a collection comprising 384 drill-core samples from 34 sites embracing all three formations of this group. Comprehensive demagnetization and field tests isolate characteristic remanent magnetizations (ChRM) summarized by overall tilt-corrected formation-mean directions of D = 183.6°, I = −12.4° (α95 = 8.1°) for the Dianzhong (64–60 Ma), D = 1.0°, I = 18.1° (α95 = 8.1°) for the Nianbo (60–50 Ma), and D = 12.4°, I = 23.2° (α95 = 7.3°) for the Pana (50–44 Ma). Fold tests are positive in each formation suggesting a pre-folding origin and we interpret the magnetizations as quasi-primary and acquired at, or slightly later than, formation of the Linzizong Group. Revised Paleogene paleopoles with Ar–Ar age constraints for the Lhasa Terrane indicate that onset of the India–Asia collision occurred no later than ∼60.5 ± 1.5 Ma at a low paleolatitude of ∼10°N. Analysis of 60 site-mean observations from a range of studies of the Pana Formation in the higher part of the succession highlight a large dispersion of ChRM directions; a number of possible causes are suggested but further study of this formation over a wider area is required to resolve this issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号