首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   6篇
地球物理   1篇
地质学   29篇
海洋学   5篇
综合类   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
排序方式: 共有38条查询结果,搜索用时 17 毫秒
1.
重晶石沉积类型丰富,具有多种成因过程。通常,沉积型重晶石可分为生物、热液、成岩和冷泉重晶石四种类型。富钡与富硫酸盐的流体(海水、早成岩孔隙水或热液流体)及其相互作用过程(水柱、热液系统、沉积柱、沉积物-水界面附近)决定了重晶石的沉积环境、宏微观产出方式、同位素组成及相应的地质意义。另外,根据扬子地区下寒武统富重晶石沉积的地质特征,简述了其各种富集机制的适用性及争论。据此建议,结合埃迪卡拉纪-寒武纪转折时期的古海洋背景,对其进行详细的沉积学及地球化学分析,有助于深化成因认识,弥合分歧。  相似文献   
2.
Halokinesis causes a dynamic structural evolution with the development of faults and fractures, which can act as either preferential fluid pathways or barriers. Reconstructing reactive fluid flow in salt dome settings remains a challenge. This contribution presents for the first time a spatial distribution map of diagenetic phases in a salt dome in northern Oman. Our study establishes a clear link between structural evolution and fluid flow leading to the formation of diagenetic products (barite and calcite) in the salt dome roof strata. Extensive formation of diagenetic products occurs along NNE-SSW to NE-SW faults and fractures, which initiated during the Santonian (Late Cretaceous) and were reactivated in the Miocene, but not along the E-W fault, which was generated during Early Paleocene time. We propose that the diagenetic products formed by mixing of a warm (100 °C) saline (17 wt% NaCl eq.) 87Sr enriched (87Sr/86Sr: 0.71023) fluid with colder (35 °C) meteoric fluid during Miocene to Pleistocene. The stable sulphur and strontium isotope composition and fluid inclusion data indicate that a saline fluid, with sulphate source derived from the Ara Group evaporite and Haima Supergroup layers, is the source for barite formation at about 100 °C, predominantly at fault conjunctions and minor faults away from the main graben structure in the dome. In the Miocene, the saline fluid probably ascended along a halokinesis-related fault due to fluid overpressure (due to the rising salt and impermeable layers in the overlying stratigraphic sequence), and triggered the formation of barite due to mixing with barium-rich fluids, accompanied by a drop in temperature. Subsequently, evolving salt doming with associated fault activity and erosion of the Jebel allows progressively more input of colder meteoric fluids, which mix with the saline warmer fluid, as derived from stable isotope data measured in the progressively younger barite-associated calcite, fault zone calcite and macro-columnar calcite. The reconstructed mixing model indicates a 50/50 to 90/10 meteoric/saline fluid mixing ratio for the formation of fault zone calcite, and a 10 times higher concentration of carbon in the saline fluid end member compared to the meteoric fluid end member. The presented mixing model of salt-derived fluids with meteoric fluids is suggested to be a general model applicable to structural diagenetic evolution of salt domes world wide.  相似文献   
3.
Precise hydrogeochemical modeling of early diagenesis is a key in the reconstruction of sedimentary basin models. This determines the mineralogical evolution of the sediment and consequently the porosity of the rock. During early diagenesis also part of the initial organic matter is converted into biogenic gas: CH4 CO2, and H2S. These processes are part of complex reaction chains during sedimentation, and biogeochemical reactions leave different signals that can be observed today. In this work, we reproduce the early diagenetic processes as integrated signals over geological times in sediments of the Demerara Rise by applying chemical thermodynamics using the PHREEQC (version 2) computer code. The investigated sediments are characterized by the presence of black shales in 410–490 mbsf and by a diagenetic barite layer above in 300–350 mbsf at depth of sulfate-methane transition (SMT). We determine the parameters that influence the location of diagenetic barite peaks in sediments overlying black shales by means of a novel modeling approach. Crucial parameters are the amount of bacterial organic matter mineralization, sedimentation rates and bottom water sulfate concentrations. All parameters are intertwining and influence the sulfate-methane cycle. They affect the location of the SMT visualized by diagenetic barite peaks. However, our model approach opens a wide field in exploring early diagenetic reactions, processes and products (such as biogenic methane) over geological times mirrored by diagenetic minerals and pore water concentration profiles that can be detected in present-day sediments.  相似文献   
4.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   
5.
Biogenic barium, mostly in the barite (BaSO4) form, has been proposed as a tracer for export production in the ocean. Here we report on biogenic barium (Baxs) and particulate organic carbon (POC) fluxes from sediment traps deployed at the DYFAMED site in the Northwestern Mediterranean Sea. Baxs fluxes display average values of 37 ± 45 and 50 ± 58 μg/m2/d at 200 and 1000 m respectively, and are linearly correlated to POC fluxes (mean values of 7.9 ± 9.3 and 6.8 ± 6.8 mg C/m2/d at 200 and 1000 m). Export production estimates, calculated using published Baxs- or POC-based algorithms, all fall below or close to the lower limit of potential export values proposed in the literature. This work clearly demonstrates the usefulness of Baxs as a tracer of oceanic export production in the Northwestern Mediterranean Sea. However, development of a quantitative export production proxy requires a clear understanding of the underlying cause(s) for the observed spatial variations in the relationship between Baxs and POC fluxes. The present study confirms that the processes leading to barite formation differ between margin and open-ocean sites and probably account for much of the regional variability in the POC/Baxs ratio.  相似文献   
6.
Northeastern Mexico hosts numerous epigenetic stratabound carbonate-hosted low-temperature hydrothermal deposits of celestine, fluorite, barite and zinc-lead, which formed by replacement of Mesozoic evaporites or carbonate rocks. Such deposits can be permissively catalogued as Mississippi Valley-type (MVT) deposits. The deposits studied in the state of Coahuila are associated with granitic and metasedimentary basement highs (horsts) marginal or central to the Mesozoic Sabinas Basin. These horsts controlled the stratigraphy of the Mesozoic basins and subsequently influenced the Laramide structural pattern. The Sabinas Basin consists of ~6,000-m-thick Jurassic to Cretaceous siliciclastic, carbonate and evaporitic series. The MVT deposits are mostly in Barremian and in Aptian-Albian to Cenomanian formations and likely formed from basinal brines that were mobilized during the Laramide orogeny, although earlier diagenetic replacement of evaporite layers (barite and celestine deposits) and lining of paleokarstic cavities in reef carbonates (Zn–Pb deposits) is observed. Fluid inclusion microthermometry and isotopic studies suggest ore formation due to mixing of basinal brines and meteoric water. Homogenization temperatures of fluid inclusions range from 45°C to 210°C; salinities range from 0 to 26 wt.% NaCl equiv., and some inclusions contain hydrocarbons or bitumen. Sulfur isotope data suggest that most of the sulfur in barite and celestine is derived from Barremian to Cenomanian evaporites. Regional geology and a compilation of metallogenic features define the new MVT province of northeastern Mexico, which comprises most of the state of Coahuila and portions of the neighboring states of Nuevo León, Durango and, perhaps extends into Zacatecas and southern Texas. This province exhibits a regional metal zonation, with celestine deposits to the south, fluorite deposits to the north and barite and Zn–Pb deposits mostly in the central part.  相似文献   
7.
A carbonate-hosted stratabound siliceous crust type (SCT) mineralization (base metal sulphides, barite, fluorite) occurs over large areas of Carnic Alps and Karawanken in the Eastern Alps. It concerns a pervasively silicified lithological unit, up to some tens of metres thick, which caps the unconformity landscapes developed on epicontinental Devonian–Dinantian carbonates. The SCT mineralization is directly overlaid by different transgressive siliciclastic sediments, which range from Lower Carboniferous to Lower Permian. The presence of fragments of the SCT mineralization in the transgressive siliciclastic sediment bounds its whole lithological evolution within a short stratigraphic interval of Lower Carboniferous age. Selected features of the regional and lithostratigraphic setting are discussed. The chemical characterisation is based on the statistical evaluation of compositional data of 581 selected samples. Three significant groups of elements have been distinguished: (1) the hydrological and metasomatically active elements (Si, Ba, F), which show a strong negative correlation amongst themselves and characterise the silica-saturated aqueous solutions; (2) the terrigenous elements (Al2O3, K2O, Fetot, TiO2, B, Be, Ce, La, Nb, V, Y, Zr), which suggest a continental margin environment for silica deposition; (3) the sulphide metals (Cu, Pb, Zn, Ni, Sb, As, Hg, Cd), which define the metalliferous signature of the SCT mineralization.Some consistent, but still debatable genetic aspects of the SCT mineralization are as follow: (1) silica may be supplied by illitization of clay-rich basinal sediments during their diagenesis. δ18O of microcrystalline quartz ranges from +18.5‰ and +24.6‰ and is very similar to δ18O of authigenic quartz deriving from diagenetic processes of illitization of clay-rich basinal sequences. (2) The diagenetic evolution of these sediments may trigger off the movement of silica-rich marine pore waters. δ34S of barite ranges from +15.5‰ to +19.3‰ with an average of +17.7‰ and are in good agreement with δ34S of sulphate in ocean waters of Upper Devonian–Lower Carboniferous age. (3) A convective hydrological system, connected with sinsedimentary transtensive tectonics, active in the Carnic Alps since the Frasnian, may be the transport mechanism of aqueous solutions. (4) A weak drop in pH in the dominant carbonate environment represents the conditions for silica precipitation.SCT mineralization, showing persistent, independent and distinct characters, occurs over large areas also in other sites of the Alpine belt and outside Italy and Austria. Therefore, it points to important markers for some sedimentary sequences as well as to a worldwide significant cyclic metallogenic event. It represents a new ore deposit-type within the carbonate-hosted mineralization.  相似文献   
8.
克拉通破坏对于华北克拉通中生代的成矿作用有着深刻的影响。相对于胶东矿集区,其他克拉通破坏型金矿矿集区的研究程度相对较低,尤其是位于华北克拉通东北部的吉南矿集区更是缺乏典型矿床的研究。本文对华北克拉通东北部吉南矿集区板庙子金矿区出露的闪长玢岩进行了岩相学、年代学及地球化学研究,同时对成矿Ⅲ阶段的重晶石矿物进行了流体包裹体、H-O-S同位素组成分析。通过LA-ICP-MS锆石U-Pb定年,在具有明显振荡环带的岩浆锆石中获得133.3±0.9Ma加权平均年龄,表明闪长玢岩的侵位时代为早白垩世;同时根据锆石CL图像下极弱的阴极发光特征识别出一组加权平均年龄为130.6±1.0Ma的热液锆石,说明岩浆侵位结晶后遭受热液蚀变改造,由此限定了板庙子金矿床的成矿时代为早白垩世。闪长玢岩地球化学特征显示亏损重稀土元素(HREEs)和Y,富集Sr,具有高钾钙碱性,Mg# 60,Na2O/K2O 1,表现埃达克质岩石特征,其岩浆来源于拆沉下地壳部分熔融,并与地幔橄榄岩反应;富集轻稀土元素(LREEs),以及亏损Nb、Ta、P、Ti等高场强元素(HFSEs)。结合区域的岩浆活动资料,表明该闪长玢岩形成于古太平洋板块俯冲作用相关的强烈伸展构造背景。重晶石矿物H-O同位素组成表明成矿流体来源于岩浆水、建造水和变质水的混合;重晶石矿物S同位素表明成矿物质来源于大洋水和海相蒸发岩。综合板庙子金矿成矿时代、成矿构造背景以及成矿流体/物质来源的特点,提出板庙子金矿属于克拉通破坏型金矿,并阐述了古太平洋板块对欧亚大陆的俯冲作用及其在早白垩世引起的拆沉作用是克拉通破坏型金矿成矿机制的关键  相似文献   
9.
杨红  张立飞  刘福来 《岩石学报》2010,26(7):2073-2082
中国大陆科学钻探主孔岩芯190~320m榴辉岩中的富锶重晶石作为副矿物存在于超高压变质和退变质阶段,其中大部分的重晶石发现于绿辉石的退变质后成合晶中。具有不同Sr含量的重晶石在榴辉岩中至少具有3种产出状态,形成于3个变质阶段:Ⅰ超高压榴辉岩相阶段,存于石榴石包裹体中,SrSO4含量约在45mol%;Ⅱ早期退变质阶段,存于后成合晶(单斜辉石+钠长石)中,SrSO4含量变化范围很大,在0mol%~21mol%之间;Ⅲ晚期角闪岩相阶段,作为黄铁矿的氧化边存在,SrSO4占2mol%~5mol%。重晶石的形成与流体作用相关,富锶重晶石能反映原赋存流体的Sr/Ba值比较高。重晶石与其伴生矿物尤其硫化物的结构关系对岩体的相对氧化还原环境具有重要指示意义。本文通过榴辉岩中重晶石副矿物学研究,确定了榴辉岩曾经历超高压变质阶段的氧化环境、早期退变质阶段的还原环境和角闪岩相阶段的氧化环境。  相似文献   
10.
高密市化山矿区是山东省重要的重晶石成矿区。矿区位于胶莱盆地内,矿床赋存于莱阳群杨家庄组构造破碎带中,严格受北西向构造控制,分布有5条规模较大的矿脉,主要矿石类型为方解石-重晶石型,该文对该重晶石矿的矿床成因(低温热液裂隙充填型)、成矿模式及找矿标志进行了分析研究,对该矿区的进一步勘查及类似地区的找矿工作具有一定的指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号