首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   13篇
  国内免费   3篇
地球物理   12篇
地质学   53篇
海洋学   17篇
综合类   1篇
  2020年   1篇
  2018年   1篇
  2017年   8篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   4篇
  2006年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1985年   3篇
  1978年   1篇
排序方式: 共有83条查询结果,搜索用时 843 毫秒
1.
Analysis of strain in Jurassic argillites forming part of the folded and thrusted sedimentary succession of the Lagonegro basin (southern Italian Apennines) has been carried out using ellipsoid-shaped reduction spots as strain markers. Most of the determined finite strain ellipsoids are of oblate type and show a peculiar distribution of the maximum extension direction (X), with maxima either subparallel or subperpendicular to the local fold axes. Using the strain matrix method, two different deformation histories have been considered to assist the interpretation of the observed finite strain pattern. A first deformation history involved vertical compaction followed by horizontal shortening (occurring by a combination of true tectonic strain and volume loss), whereby all strain is coaxial and there is no change in the intermediate axis of the strain ellipsoid. By this type of deformation sequence, which produces a deformation path where total strain moves from the oblate to the prolate strain field and back to the oblate field, prolate strain ellipsoids can be generated and may be recorded where tectonic deformation has not been large enough to reverse pretectonic compaction. This type of deformation history may be of local importance within the study area (i.e. it may characterize some fold hinge regions) and, more generally, is probably of limited occurrence in deformed pelitic rocks. A second deformation sequence considered the superposition of pre-tectonic compaction and tectonic strain consisting of initial layer-parallel shortening followed by layer-parallel shear (related to flexural folding). Also in this instance, volume change during tectonic deformation and tectonic plane strain have been assumed. For geologically reasonable amounts of volume loss due to compaction and of initial layer-parallel shortening, this type of deformation history is capable of producing a deformation path entirely lying within the oblate strain field, but still characterized by a changeover, during deformation, of the maximum extension axis (X) from a position parallel to the fold axis to one perpendicular to it. This type of deformation sequence may explain the main strain features observed in the study area, where most of the measured finite strain ellipsoids, determined from the limb regions of flexural folds, display an oblate shape, irrespective of the orientation of their maximum extension direction (X) with respect to the local structural trends. More generally, this type of deformation history provides a mechanism to account for the predominance of oblate strains in deformed pelitic rocks.  相似文献   
2.
Geotechnical Properties of Low Calcium and High Calcium Fly Ash   总被引:1,自引:0,他引:1  
In this paper, a comparative study has been made for physical and engineering properties of low calcium and high calcium Indian fly ash. The grain size distribution of fly ash is independent of lime content. Fly ash particles of size >75 μm are mostly irregular in shape whereas finer fractions are spherical for low calcium fly ash. For high calcium fly ash, chemical and mineralogical differences have been observed for different size fractions. Compared to low calcium fly ash, optimum moisture content is low and maximum dry density is high for high calcium fly ash. Optimum moisture content is directly proportional and maximum dry density is inversely proportional to the carbon content. The mode and duration of curing have significant effect on strength and stress–strain behavior of compacted fly ash. The gain in strength with time for high calcium fly ash is very high compared to that of low calcium fly ash due to presence of reactive minerals and glassy phase.  相似文献   
3.
Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregate is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. We propose that this unusual compaction behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction.  相似文献   
4.
Localized compaction in porous rocks is a recently recognized phenomenon that has been shown to reduce permeability dramatically. Consequently, the phenomenon is relevant to a variety of technologies involving fluid injection or withdrawal. This article summarizes current understanding of localized compaction and impediments to further progress. The article is based on discussions at a small workshop on localized compaction sponsored by the Office of Science, U. S. Department of Energy.  相似文献   
5.
Large quantities of leachate-contaminated lateritic soil results from dump yards in the southwest coast of India. These dump yards receive large quantities of municipal solid waste which includes chemical, industrial and biomedical wastes. Large areas of land are currently being used for this purpose. An extensive laboratory testing program was carried out to determine the compaction characteristics and hydraulic conductivity of clean and contaminated lateritic soil. Batch tests were used to study the immediate effect of leachate contamination on the properties of lateritic soil. Contaminated specimens were prepared by mixing the lateritic soil with leachate in the amount of 5%, 10% and 20% by weight to vary the degree of contamination. The results indicated a small reduction in maximum dry density and an increase in hydraulic conductivity due to leachate-contamination. The change induced by chemical reaction in the microstructure of the soil was studied by scanning electron microscope before and after contamination of soil with leachate. The structure of the leachate contaminated soil sample appeared to be aggregated in scanning electron microscope analysis. The aggregated structure increases the effective pore space and thus increases the hydraulic conductivity. Fifty percent increase in hydraulic conductivity was observed for specimens prepared at standard Proctor density and mixed with 20% leachate. Compaction characteristics did not change much with the presence of leachate up to 10%. With 20% leachate the maximum dry density decreased slightly indicating excess leachate in the soil. However the changes are not significant.  相似文献   
6.
In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.  相似文献   
7.
Three-dimensional seismic data and wireline logs from the western Niger Delta were analyzed to reveal the sedimentary and tectonic history of a major deltaic growth-fault depocenter comprising a kilometer-scale rollover anticline. The seismic units of the rollover show a non-uniform thickness distribution with their respective maximum near the main bounding growth-fault on the landward side of the system. This wedge-shaped sediment-storage architecture ultimately reflects the non-uniform creation of accommodation space in the study area that was controlled by 1) the differential compaction of the hanging-wall and footwall strata, 2) the lateral variation of fault-induced tectonic subsidence above the listric master fault, and possibly 3) local subsidence related to the subsurface movement of mobile shale reacting to loading and buoyancy. A sequential three-dimensional decompaction of the interpreted deltaic rollover units allowed to reconstruct and measure the compaction development of the rollover succession through time, documenting that sediment compaction contributed per depositional interval to between 25 and 35% of the generation of depositional space subsequently filled by deltaic sediments. The incremental decompaction of sedimentary units was further used to quantify the cumulative amount of accommodation space at and around the studied rollover that was created by fault movement, shale withdrawal, regional tectonic subsidence, isostasy and changes in sea level. If data on the regional subsidence and eustasy are available, the contribution of these basinwide controls to the generation of depositional space can be subtracted from the cumulative accommodation balance, which ultimately quantifies the amount of space for sediments to accumulate created by fault movement or shale withdrawal. This observation is important in that it implies that background knowledge on subsidence, stratigraphic age and sea-level changes allows to reconstruct and quantify fault movement in syn-tectonic deltaic growth successions, and this solely based on hanging-wall isopach trends independent of footwall information.  相似文献   
8.
The morphology of Carbonate platforms may be influenced by tectonic activity and eustatic variations. 3D seismic data and satellite imagery are used in order to investigate the morphological similarities between present-day carbonates platforms, East of Borneo Island and Miocene carbonate platforms of the South China Sea. The morphological similarities exhibit platform fragmentation, that could be caused by subtle faulting, sufficient to drown reef rims; platform contraction, which is a result of back-stepping of the reef margin during a relative sea level rise and polygonal patterns in internal lagoons, described as mesh reefs in modern platforms and possibly interpreted as karst in Miocene platforms.Vertical movements may trigger the formation of new geomorphological conditions that modify the distribution of coral growth with respect to the new hydrodynamic conditions in space and time. These movements (uplift and tilting) reduce and localize the space necessary for the coral ecosystem, explaining the contraction leading to drowning of parts of and, ultimately, the whole platform.  相似文献   
9.
Mechanical compaction is the main porosity-reducing process in sandstones, including high-reservoir-quality rigid-grain sandstones. For such sandstones, the extrapolation of theoretical or experimental compaction algorithms needs calibration with rocks having well constrained burial histories. Evaluating the compaction of these rocks is achieved by comparing current intergranular volume (IGV) with depositional IGV, which is strongly dependent on sorting. However, because sandstone sorting is difficult to measure accurately, its impact on depositional porosity and compaction state is largely underestimated. We use the quartzarenites of the Oligocene Carbonera Formation in the subsurface of the hydrostatically-pressured Llanos basin to illustrate the importance of sorting when evaluating the compaction of rigid-grain sandstones. IGV and sorting were measured in core samples using a combination of transmitted-light and cathodoluminescence images, resulting in improved accuracy over standard procedures. The compaction state of clean quartzarenites at given depths is best described using IGV-versus-sorting plots, which are used to derive compaction curves for specified sorting values. The IGV-versus-sorting trends are displaced to lower IGV values with increasing burial depth. The differences in IGV caused by differences in sorting exceed the differences in IGV resulting from 1000 m of burial, illustrating the high impact of sorting when evaluating compaction. Contrasting with published experimental results, the compaction of the Llanos basin ductile-grain-poor quartzarenites is independent of grain size, and grain rearrangement is the main compaction mechanism during the first ∼1.6 km of burial. Based on the Llanos data, we have generated IGV-versus-depth curves for clean pure quartzarenites of specific sorting, which can be used to predict their maximum primary porosity up to moderate burial depths. Differences with other published burial curves are probably related to unaccounted variations in sorting, ductile-grain content and framework-strengthening cements. However, the Llanos basin quartzarenites contain virtually no cements, explaining their high degree of compaction relative to other rigid-grain sandstones, and making them ideal to isolate the effects of compaction on the IGV of quartzarenites. The Llanos basin data suggest that, below ∼2.5 km of depth, clean well- to moderately well sorted quartzarenites continue reducing their IGV by mechanical compaction below the 26% limit, which should apply only to extremely well sorted, rigid grain, uncemented sandstones.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号