首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   133篇
  国内免费   144篇
测绘学   18篇
地球物理   14篇
地质学   735篇
海洋学   7篇
天文学   1篇
综合类   163篇
自然地理   10篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   10篇
  2017年   33篇
  2016年   17篇
  2015年   12篇
  2014年   47篇
  2013年   24篇
  2012年   24篇
  2011年   36篇
  2010年   26篇
  2009年   30篇
  2008年   31篇
  2007年   44篇
  2006年   42篇
  2005年   41篇
  2004年   28篇
  2003年   30篇
  2002年   23篇
  2001年   52篇
  2000年   39篇
  1999年   34篇
  1998年   50篇
  1997年   31篇
  1996年   31篇
  1995年   17篇
  1994年   23篇
  1993年   37篇
  1992年   26篇
  1991年   22篇
  1990年   15篇
  1989年   11篇
  1988年   9篇
  1987年   2篇
  1986年   1篇
排序方式: 共有948条查询结果,搜索用时 20 毫秒
1.
The North China Craton(NCC)hosts some of the world-class gold deposits that formed more than 2 billion years after the major orogenic cycles and cratonization.The diverse models for the genesis of these deposits remain equivocal,and mostly focused on the craton margin examples,although synchronous deposits formed in the interior domains.Here we adopt an integrated geological and geophysical perspective to evaluate the possible factors that contributed to the formation of the major gold deposits in the NCC.In the Archean tectonic framework of the NCC,the locations of the major gold deposits fall within or adjacent to greenstone belts or the margins of micro-continents.In the Paleoproterozoic framework,they are markedly aligned along two major collisional sutures-the Trans North China Orogen and the Jiao-Liao-Ji Belt.Since the Mesozoic intrusions hosting these deposits do not carry adequate signals for the source of gold,we explore the deep roots based on available geophysical data.We show that the gold deposits are preferentially distributed above zones of uplifted MOHO and shallow LAB corresponding to thinned crust and eroded sub-lithospheric mantle,and that the mineralization is located above regions of high heat flow representing mantle upwelling.The NCC was at the center of a multi-convergent regime during the Mesozoic which intensely churned the mantle and significantly en riched it.The geophysical data on Moho and LAB upwarp from the centre towards east of the craton is more consistent with paleo-Pacific slab subduction from the east exerting the dominant control on lithospheric thinning.Based on these results,and together with an evaluation of the geochemical and isotopic features of the Mesozoic magmatic intrusions hosting the gold mineralization,we propose a genetic model that invokes reworking of ancient Au archives preserved in the lower crust and metasomatised upper mantle and which were generated through multiple subduction,underplating and cumulation events associated with cratonization of the NCC as well as the subduction-collision of Yangtze Craton with the NCC.The heat and material input along zones of heterogeneously thinned lithosphere from a rising turbulent mantle triggered by Mesozoic convergent margins surrounding the craton aided in reworking the deep roots of the ancient Au reservoirs,leading to the major gold metallogeny along craton margins as well as in the interior of the NCC.  相似文献   
2.
《China Geology》2021,4(2):245-255
The Central Africa Fold Belt (CAFB) is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years. However, favorable areas for gold exploration are poorly known. This paper presents (1) the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and (2) constraints gold mineralization events with respect to the collisional evolution of the CAFB. The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic (R) and the antithetic (R’) shears, which accompanied the dextral slip along the NE to ENE striking shear. The latter coincides with the last 570–552 Ma D3 dextral simple shear-dominated transpression, which is parallel to the Bétaré Oya shear zone hosting gold deposits. Gold mineralizations, which mainly occurred during the last dextral shearing, are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation. Gold mineralizations occurred mainly during the 570–552 Ma D3 event. The reactivation, which might be due to dextral simple shear during mylonitzation, plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration. Therefore, the Central Cameroon Shear Zone where Kékem is located, and which shows similar petrographical and structural features to those controling Batouri gold district, is a target area for gold exploration in Cameroon.  相似文献   
3.
《China Geology》2020,3(3):402-410
This paper focuses on the heavy metal enrichment and heavy metal pollution degree associated with mining activities in some crops and the soils of different parent materials in the Xiaoqinling Gold Belt. According to the geochemical analysis results of the soils observed in the gold belt, the soils are most highly enriched in Pb, followed by Cr, Cu, and Zn. Furthermore, they are relatively poor in Hg, Cd, and As. It is also shown that the heavy metals in all kinds of soils have the same geochemical characteristics in the gold belt. As for the crops (such as corn and wheat) in the gold belt, Zn and Cu are the most abundant elements, followed by Pb and Cr. Meanwhile, Hg, Cd, and As were found to have relatively low concentrations in the crops. The heavy metals in wheat and corn have the same geochemical characteristics in the gold belt in general. Compared to the aeolian loess soils and the crops therein, heavy metals are more enriched in diluvial and alluvial soils and the crops therein. As shown by relevant studies, the Hg, Pb, Cd, Cu, and Zn pollution are mainly caused by mining activities. Corn and wheat in the gold belt have a high tendency of risk exposure to heavy metal pollution since they are mostly affected by mining activities and feature high background values of heavy metal concentrations. Furthermore, wheat is more liable to be enriched in heavy metals than corn is grown in all types of soils. The Hg pollution in soils leads to Hg accumulation, increasing the risk of Hg uptake in crops, and further affecting human health. This study will provide a scientific basis for the control and management of heavy metals in farmland soils of mining areas.  相似文献   
4.
扎格拉金矿位于班公湖-怒江结合带东段及冈底斯-念青唐古拉板片北缘的腾冲-班戈岩浆弧带上;受被动陆缘深海复理石建造、 脆-韧性剪切带和深成岩浆活动控制。流体包裹体类型以单相和A型两相盐水溶液包裹体为主;次为B型两相盐水溶液包裹体、 富CO2两相包裹体和含CO2三相包裹体;成矿流体属中低温和中低盐度H2O-NaCl-CO2体系。氢、 氧同位素和相对富含K+、 Na+、Ca2+、 Mg2+、Cl-、SO2-4 的包裹体液相成分;显示成矿流体主要来自长期封存于沉积岩的深循环热(卤)水中;矿床成因类型为浅成中低温地下热(卤)水溶滤型金矿床。其成矿特征和流体性质与穆龙套型金矿床具有诸多相似性;研究该区域对西藏“沙丁板岩系”分布区金铜多金属找矿具有重要意义。  相似文献   
5.
本文对海马谷地区金矿进行调查,在贵州安龙海马谷发现北东向陡倾角断层控制金矿体,其围岩为二叠系茅口组生物灰岩,矿石为硅化灰岩角砾岩。根据本次调查及收集已有勘查研究成果,建立了该区的成矿模式,认为该区北东向陡倾角断层是下一步该区重要的找矿目标。  相似文献   
6.
Moreira Gomes is a recently discovered deposit (21.7 t Au) of the Cuiú-Cuiú goldfield, Tapajós Gold Province, Amazonian Craton. The mineralized zone is about 1200 m long, 30–50 m wide, and at least 400 m in depth. The zone is controlled by a subvertical, east–west-trending structure that is related to a left lateral strike-slip fault system. The host rocks are predominantly tonalites of the Creporizão Intrusive Suite (1997 ± 2 Ma) of uncertain tectonic setting (magmatic arc or post-collision). Hydrothermal alteration and mineralization are predominantly of the fissure-filling type and locally pervasive. Sericitization, chloritization, sulfidation, silicification, carbonatization and epidotization are the observed alteration types. Pyrite is the predominant sulfide mineral and bears inclusions of chalcopyrite, galena, sphalerite and minor hessite and bismuthinite. Gold occurs predominantly as inclusions in pyrite and subordinately in the free-milling state in quartz veins. Ag, Pb and Bi have been detected by semi-quantitative EDS analysis.Three types of fluid inclusions, hosted in quartz veins and veinlets, have been identified. (1) one- and two-phase CO2 inclusions; (2) two- and three-phase H2O–CO2-salt inclusions, and (3) two-phase H2O-salt inclusions. The CO2-bearing types are interpreted as the product of phase separation of an immiscible fluid. This fluid presents low to moderate density, low to moderate salinity (1.6–11.8 wt.% NaCl equivalent) and was trapped at 280° to 350 °C. The chemical system of the aqueous inclusions may contain CaCl2 and/or MgCl2, salinity varies from zero to 10.1 wt.% NaCl equivalent. Only locally salinities up to 25% have been recorded. This fluid was trapped between 120° and 220 °C and is interpreted as resulting from mixing of a hotter and more saline aqueous fluid (in part derived from phase separation of the H2O–CO2 fluid) with a cooler and dilute aqueous fluid.The δ34S values of pyrite (−0.3‰ to 3.9‰) are probably related to magmatic sulfur. The isotopic composition of inclusion fluids and of the fluid in equilibrium with hydrothermal minerals (quartz, chlorite, and calcite) show δ18O and δD values that range from +0.5 to +9.8‰, and from −49 to −8‰, respectively. Mineral pairs show equilibrium isotopic temperatures that are compatible with the fluid inclusion homogenization temperatures and with textural relationships of the hydrothermal minerals.Isotopic results combined with mineralogical and fluid inclusion data are interpreted to reflect a magmatic-hydrothermal system that evolved in at least three stages. (1) Exsolution of a CO2-bearing magmatic fluid between 400 °C and 320–350 °C and up to 2.1 kbar (6 km in depth) followed by phase separation and main precipitation of the hydrothermal assemblage composed of chlorite–sericite–pyrite–quartz-gold. (2) Cooling and continuous exsolution of CO2 produced a CO2-depleted and slightly more saline aqueous fluid that was trapped mainly at 250°–280 °C. The predominant hydrothermal assemblage of stage 1 continued to form, but epidote is the main phase at this stage. (3) Mixing of the stage 2 aqueous fluid with a cooler and dilute aqueous fluid of meteoric origin, which was responsible for the main carbonatization phase. The mineralizing fluid was neutral to slightly alkaline and relatively reduced. H2S (and/or HS-) might have been the main sulfur species in the fluid and Au(HS)2- was probably the gold transporting complex. Gold deposition occurred as a consequence of a combination of mechanisms, such as phase separation, mixing and fluid-rock interaction.The Moreira Gomes is a granite-hosted gold deposit that is interpreted to be a product of a magmatic-hydrothermal gold system. The age of ore formation (∼1.86 Ga) is consistent with the final stages of evolution of the widespread high-K, calc-alkaline Parauari Intrusive Suite, although the transitional to predominantly alkaline Maloquinha Intrusive Suite cannot be ruled out. Notwithstanding, the deposit does not show the classic features of (oxidized or reduced) intrusion-related gold deposits of Phanerozoic magmatic arcs.  相似文献   
7.
雄黄岩金矿床位于黔西南灰家堡矿田东段,矿床受灰家堡背斜控制,矿床位于灰家堡背斜东段枢纽产状由缓变陡地段,主要矿体赋存于中上二叠统茅口组与龙潭组岩溶不整合面构造蚀变体中,矿体分布于背斜核部800 m,矿体规模大;其次赋存于龙潭组中上部不纯碳酸盐岩中,矿体分布于背斜核部300~500 m.构造蚀变体普遍具金矿化,能否形成工业矿体受卷入地层厚度、岩性组合、蚀变强弱及古岩溶地貌等因素控制.通过对该矿床地质特征的研究,特别是构造蚀变体矿化研究和深部地球探测,认为在该区沿灰家堡背斜轴线向东延伸段、两翼构造蚀变体及北翼F101断层带中仍有矿体存在,具有较好的找矿远景.  相似文献   
8.
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.  相似文献   
9.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   
10.
《China Geology》2020,3(2):230-246
The Dongyang gold deposit is a newly discovered epithermal deposit in Fujian Province, Southeast China, along the Circum-Pacific metallogenic belt. Herewith, the authors present mineralogical, scanning electron microscope, and laser ablation inductively coupled clasma mass spectrometry analysis to reveal the relations between Au and Te, As, S, Fe, etc., and discuss the gold precipitation process. The pyrites in this deposit are Fe-deficient, and are enriched in Te and As. The authors infer that As was mainly in form of As-complexes, and Te-Au-Ag inclusions/solid solution also exsits in the Py I. Along with the depletion of Te and As, they were less active chemically in the Py II, and Au may be incorporated into As-rich and Fe-deficient surface sites by chemisorption onto As-rich growth surfaces. Because of the incorporation of new fluid, Te and As became the most active chemically in the Py III, which was the main elements precipitation stage, and As dominantly substituted for S in the lattice of pyrite, due to the more reducing condition. The authors propose Au was in form of invisible gold, and the incorporation of gold can be considered as post-pyrite event, while the Au-bearing minerals were result of post incorporation of gold in arsenian pyrite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号