首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  国内免费   7篇
测绘学   1篇
地质学   38篇
海洋学   2篇
综合类   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
陈缘  韩禹  许博  刘金高 《岩石学报》2021,37(12):3869-3879
内蒙古黄岗梁萤石呈现稀有的红色特征,该颜色萤石全球产量稀少,本文利用LA-ICP-MS原位测试技术对其微量元素地球化学特征进行了系统分析,探讨黄岗梁铁锡矿床中红色萤石的成因。微量元素分析结果显示黄岗梁萤石样品中总稀土元素含量较低,并表现出左倾的富集重稀土特征,其中红色和粉色萤石的稀土元素配分曲线显示出Dy-Tm拱顶式凸起的配分模式,表明其结晶作用发生在成矿流体演化的最后阶段;Y/Ho比值104~197,与热液成因萤石一致,且La/Ho比值为0.027~0.126,具强的负异常,表明了黄岗梁萤石为热液成因;Ce/Ce*比值0.57~0.98,Eu/Eu*比值0.22~0.63,均表现出负异常,表明形成黄岗梁萤石的热液流体是在相对还原环境下形成且温度高于200℃。综合分析萤石的地球化学特征和其与围岩的接触关系,认为黄岗梁萤石主要分为两阶段结晶,一阶段为与石英同期结晶形成红色、粉色部分,二阶段为在石英形成后结晶形成的由阳起石他色致色的绿色部分,而黄岗梁萤石罕见的红色是由于Y元素较为富集且含量远高于其他稀土元素,从而形成YO2色心并在萤石中作用而显色。  相似文献   
2.
The Central Eastern Desert (CED) of Egypt, a part of Neoproterozoic Arabian Nubian Shield (ANS), embraces a multiplicity of rare metal bearing granitoids. Gabal El-Ineigi represents one of these granitic plutons and is a good example of the fluorite-bearing rare metal granites in the ANS. It is a composite pluton consisting of a porphyritic syenogranite (SG; normal granite) and coarse- to medium-grained highly evolved alkali-feldspar granite (AFG; fluorite and rare metal bearing granite) intruded into older granodiorite and metagabbro-diorite rocks. The rock-forming minerals are quartz, K-feldspar (Or94-99), plagioclase (An0-6) and biotite (protolithonite-siderophyllite) in both granitic types, with subordinate muscovite (Li-phengite) and fluorite in the AFG. Columbite-(Fe), fergusonite-(Y), rutile, zircon and thorite are the main accessory phases in the AFG while allanite-(Ce) and epidote are exclusively encountered in the SG. Texture and chemistry of minerals, especially fluorite, columbite and fergusonite, support their magmatic origin. Both granitic types are metaluminous to weakly peraluminous (A/CNK = 0.95–1.01) and belong to the post-collisional A2-type granites, indicating melting of underplated mafic lower crust. The late phase AFG has distinctive geochemical features typical of rare metal bearing granites; it is highly fractionated calc-alkaline characterized by high Rb, Nb, Y, U and many other HFSE and HREE contents, and by extremely low Sr and Ba. Moreover, the REE patterns show pronounced negative Eu anomalies (Eu/Eu1 = 0.03 and 0.06) and tetrad effect (TE1,3 = 1.13 and 1.27), implying extensive open system fractionation via fluid–rock interactions that characterize the late magmatic stage differentiation. The SG is remarkably enriched in Sr, Ba and invariably shows a relative enrichment in light rare-earth elements (LREEs). The SG rocks (569 ± 15 Ma) are characterized by relatively low initial 87Sr/86Sr ratios (0.7034–0.7035) that suggest their derivation from the mantle, with little contamination from the older continental crust. By contrast, the AFG has very high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for the high temperature magma-fluid interaction. The positive εNd(t) values of AFG (+7.40) and SG (+5.17), corresponding to young Nd-TDM2 ages ranging from 707 to 893 Ma, clearly reflect the juvenile crustal nature of Gabal El-Ineigi granitoids and preclude the occurrence of pre-Neoproterozoic continental crust in the ANS. The field relationships, chemical, petrological and isotopic characteristics of El-Ineigi SG and AFG prove that they are genetically not associated to each other and indicate a complex origin involving two compositionally distinct parental magmas that were both modified during magmatic fractionation processes. We argue that the SG was formed by partial melting of a mid-crustal source with subsequent fractional crystallization. In contrast, the AFG was generated by partial melting and fractionation of Nb- and Ta-rich amphibole (or biotite) of the lower crust. The appreciable amounts of fluorine in the magma appears to be responsible for the formation of rare metal element complexes (e.g., Nb, Ta, Sn and REEs), and could account for the rare metal mineralization in the El-Ineigi AFG.  相似文献   
3.
The exceptional development of coeval hydrocarbon and aqueous fluid inclusions (FI) in fluorite from the MVT-type ore deposit of Koh-i-Maran, Baluchistan (North Kirthar range, Pakistan), provides samples which are representative of the ore-forming fluid and which support the hypothesis of petroleum migration in the province. Primary brines at 125°C (10 wt% equ. NaCl) and secondary CH4-rich brines at 135°C (7 wt% equ. NaCl), are recognised to be associated with oil migration in the fluid inclusions. They support the model of a per ascensum MVT (Mississippi Valley Type) stratabound hydrothermal deposit. A pressure–temperature path of 120–125°C to 165–200 bars is calculated from microthermometric data and PVT modelling of hydrocarbon FI using the modified Peng–Robinson Equation of State (IFP software) from primary cogenetic inclusions (oil and brines).The composition of gas and oil fractions is obtained by a combination of Synchrotron FTIR microanalysis and gas chromatography performed on individual fluid inclusions. The oil entrapped as a coeval primary fluid phase is a light aliphatic normal oil in the range C8–C35 with a high CO2 content. The brown solid phase found systematically in the oil is probably asphaltene resulting from precipitation after trapping of the heavy fraction, which commonly occurs by decreasing pressure and temperature and\or by CO2 injection. Later CH4-rich brine influx probably modified part of the oil in the primary fluid inclusions because degraded oil is observed within such inclusions. Biomarkers obtained by GC-MS analysis indicate a terpane distribution quite similar to the nearest oil seepage in the Gokurt area. This result and the high CO2 content of organic fluid inclusions indicate a restricted/confined sedimentary environment for the source rock, which could correspond to the Eocene Carbonate formation with type-II organic matter. A possible additional input of gas from the Sambar formation is suggested as feasible. The link between the fluid inclusion data and the geodynamic evolution lead us to propose a circulation of basinal fluids driven mainly by the fault system during dewatering in the foredeep. In Pakistan, they are coeval to major compressional NW–SE Oligocene episode in the thrust belt. The origin of the fluorine may be found in the basin sediments as well as near the basement. The brines originated in salt structures recognized in eocambrian at the decollement level, the source rock was already mature.  相似文献   
4.
白杨河矿床是我国类型独特的一个特大型铍、铀多金属矿床,铍矿物主要确定为羟硅铍石,铀矿物主要发现沥青铀矿和次生的硅钙铀矿以及少量的铌铀矿,伴生矿物主要是萤石。为恢复铀和铍的成矿过程,划分成矿阶段,本次工作通过系统采集钻孔中的萤石样品,进行了Sm-Nd同位素测年研究,获得了三组等时线年龄,分别为291±16Ma、265±33Ma和207±37Ma,代表了成矿前、成矿期和成矿后萤石的形成;采集中心工地、新西工地和九号工地平巷内的沥青铀矿样品,进行了UPb同位素测年研究,获得了~(206)Pb/~(238)U表观年龄237.8±3.3Ma、224±3.1Ma、197.8±2.8Ma、97.8±1.4Ma和30.0±0.4Ma,利用U-Pb表观年龄将铀矿化划分为四个阶段:中三叠世、晚三叠-早侏罗世、晚白垩世和古近纪中期。因此,白杨河矿床具有铍早铀晚的成矿特点,铀成矿经历了四个阶段。  相似文献   
5.
Fluorite deposits are widespread in northern Mexico and those deposits have traditionally been categorized as exclusively hydrothermal–magmatic in origin. Recently, two different fluorite-bearing type models have been proposed for the Northern Mexican deposits: (1) MVT-like deposits formed from basinal brines mobilized during the Laramide Orogeny (La Encantada deposit, Gonzalez-Partida et al., [Gonzalez-Partida, E., Carrillo-Chavez, A., Grimmer, J.O.W., Pironon, J., 2002. Petroleum-rich fluid inclusions in fluorite, Purisima mine, Coahuila, Mexico. International Geological Review 44 (8), 751–763.]; Tritlla et al., [Tritlla, J., Gonzalez-Partida, E., Levresse, G., Banks, D., Pironon, J., 2004. Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type processes — a reply. Ore Geology Reviews 25, 329–332.]); and (2) fluorite-bearing skarns in close contact with rhyolite intrusives (Levinson, [Levinson, A.A., 1962. Beryllium–fluorine mineralization at Aguachile Mountain, Coahuila, Mexico. American Mineralogist 47, 67–75.]). The El Pilote fluorite deposit falls into the second category, and is the only known example of a magmatic-related fluorite deposit in the area. The fluorite trace-element patterns from both the El Pilote skarn and La Encantada MVT deposits display comparable and very low relative abundances as well as comparable chondrite-normalized REE patterns; this would suggest that the skarn F-source comes from the remobilization of a MVT fluorite manto.  相似文献   
6.
Rb–Sr isotope data for siderite and fluorite from sediment-hosted epithermal mineral veins in the eastern Harz Mountains (Germany) are presented. Several fluorite and siderite-bearing paragenetic stages have been proposed for these veins, with the most important mineralization being related to a quartz–sulfide and a subsequent calcite–fluorite–quartz stage, which occurred at 226±1 and 209±2 Ma, respectively. Our Rb–Sr data do not permit the identification of distinct generations of siderite and fluorite, but rather reveal straight internal mixing relations, reflecting mixing of fluids or differential fluid–rock interaction processes. This indicates merely two significant phases of mineral deposition related to the quartz–sulfide and calcite–fluorite–quartz stages. It is shown that the Paleozoic sedimentary host rocks of the veins are the most likely source for the siderite Sr, whereas fluorite displays a two-component mixture between sedimentary Sr and radiogenic Sr derived from locally occurring Permian metavolcanic rocks. Editorial handling: B. Lehmann  相似文献   
7.
晴隆锑矿床中萤石的稀土元素特征及其指示意义   总被引:18,自引:0,他引:18  
本文系统地研究了黔西南晴隆锑矿床中萤石的稀土元素地球化学,表明不同颜色、不同矿物组合的萤石的稀土元素含量变化较大,但具有固定的REE分配模式,以明显的负Ce异常、富MREE、分配曲线相对平缓为特征;这种配分模式主要是受其晶体化学因素的控制,而与溶液中REE络合物的稳定性关系不大。萤石的稀土元素组成与其矿物共生组合关系不大,但与其颜色关系较密切。萤石的Ce、Eu异常主要是受氧逸度的控制,流体源区的氧逸度较高,矿物沉淀场所的氧逸度相对较低,从而导致该矿中萤石呈明显的负Ce异常,或正或负的Eu异常。晴隆锑矿床形成于开放体系条件下,水/岩反应很可能是导致萤石发生沉淀的主要机制。萤石中的Ca部分来自茅口组灰岩,部分来自大厂层玄武岩;而矿化剂F可能主要来自外部。  相似文献   
8.
A carbonate-hosted stratabound siliceous crust type (SCT) mineralization (base metal sulphides, barite, fluorite) occurs over large areas of Carnic Alps and Karawanken in the Eastern Alps. It concerns a pervasively silicified lithological unit, up to some tens of metres thick, which caps the unconformity landscapes developed on epicontinental Devonian–Dinantian carbonates. The SCT mineralization is directly overlaid by different transgressive siliciclastic sediments, which range from Lower Carboniferous to Lower Permian. The presence of fragments of the SCT mineralization in the transgressive siliciclastic sediment bounds its whole lithological evolution within a short stratigraphic interval of Lower Carboniferous age. Selected features of the regional and lithostratigraphic setting are discussed. The chemical characterisation is based on the statistical evaluation of compositional data of 581 selected samples. Three significant groups of elements have been distinguished: (1) the hydrological and metasomatically active elements (Si, Ba, F), which show a strong negative correlation amongst themselves and characterise the silica-saturated aqueous solutions; (2) the terrigenous elements (Al2O3, K2O, Fetot, TiO2, B, Be, Ce, La, Nb, V, Y, Zr), which suggest a continental margin environment for silica deposition; (3) the sulphide metals (Cu, Pb, Zn, Ni, Sb, As, Hg, Cd), which define the metalliferous signature of the SCT mineralization.Some consistent, but still debatable genetic aspects of the SCT mineralization are as follow: (1) silica may be supplied by illitization of clay-rich basinal sediments during their diagenesis. δ18O of microcrystalline quartz ranges from +18.5‰ and +24.6‰ and is very similar to δ18O of authigenic quartz deriving from diagenetic processes of illitization of clay-rich basinal sequences. (2) The diagenetic evolution of these sediments may trigger off the movement of silica-rich marine pore waters. δ34S of barite ranges from +15.5‰ to +19.3‰ with an average of +17.7‰ and are in good agreement with δ34S of sulphate in ocean waters of Upper Devonian–Lower Carboniferous age. (3) A convective hydrological system, connected with sinsedimentary transtensive tectonics, active in the Carnic Alps since the Frasnian, may be the transport mechanism of aqueous solutions. (4) A weak drop in pH in the dominant carbonate environment represents the conditions for silica precipitation.SCT mineralization, showing persistent, independent and distinct characters, occurs over large areas also in other sites of the Alpine belt and outside Italy and Austria. Therefore, it points to important markers for some sedimentary sequences as well as to a worldwide significant cyclic metallogenic event. It represents a new ore deposit-type within the carbonate-hosted mineralization.  相似文献   
9.
Northeastern Mexico hosts numerous epigenetic stratabound carbonate-hosted low-temperature hydrothermal deposits of celestine, fluorite, barite and zinc-lead, which formed by replacement of Mesozoic evaporites or carbonate rocks. Such deposits can be permissively catalogued as Mississippi Valley-type (MVT) deposits. The deposits studied in the state of Coahuila are associated with granitic and metasedimentary basement highs (horsts) marginal or central to the Mesozoic Sabinas Basin. These horsts controlled the stratigraphy of the Mesozoic basins and subsequently influenced the Laramide structural pattern. The Sabinas Basin consists of ~6,000-m-thick Jurassic to Cretaceous siliciclastic, carbonate and evaporitic series. The MVT deposits are mostly in Barremian and in Aptian-Albian to Cenomanian formations and likely formed from basinal brines that were mobilized during the Laramide orogeny, although earlier diagenetic replacement of evaporite layers (barite and celestine deposits) and lining of paleokarstic cavities in reef carbonates (Zn–Pb deposits) is observed. Fluid inclusion microthermometry and isotopic studies suggest ore formation due to mixing of basinal brines and meteoric water. Homogenization temperatures of fluid inclusions range from 45°C to 210°C; salinities range from 0 to 26 wt.% NaCl equiv., and some inclusions contain hydrocarbons or bitumen. Sulfur isotope data suggest that most of the sulfur in barite and celestine is derived from Barremian to Cenomanian evaporites. Regional geology and a compilation of metallogenic features define the new MVT province of northeastern Mexico, which comprises most of the state of Coahuila and portions of the neighboring states of Nuevo León, Durango and, perhaps extends into Zacatecas and southern Texas. This province exhibits a regional metal zonation, with celestine deposits to the south, fluorite deposits to the north and barite and Zn–Pb deposits mostly in the central part.  相似文献   
10.
Epithermal deposits mined for fluorite in Patagonia, Argentina, are closely related to late Triassic through Jurassic magmatic activity which brought about felsic to intermediate magmatic rocks. The fluorite mineralization in the Patagonian epithermal system resulted from gaseous F-and CO2-enriched magmas which lead to an explosive phreatomagmatic volcanism, when getting in contact with groundwater near the surface. As a result of these hydrothermal processes, rapid cooling took place in the epithermal mineralization. Changes in the viscosity along with the cooling down of mineralizing fluids caused mottled mineral colors blurring the boundaries between the stages and ore textures.The fluids accountable for the main constituents fluorite, quartz, barite and silica were operative over a vertical extension of roughly 600 m. Their temperature of formation dropped from 379 °C through 64 °C, while the pH decreased from the heat center towards the paleosurface under oxidizing conditions. This steep temperature gradient conducive to the telescoping of mineral associations into each other was accompanied by a rapid loss in CO2, and a mixing of meteoric and magmatic fluids. Even the boundary between the hypogene and supergene alteration cannot be drawn precisely within the assemblage of Mn oxides, which bridge the gap between hypogene and supergen mineralization. The physical-chemical parameters of the fluids, particularly, the redox conditions did not allow sulfides to be preserved. A classification of the epithermal system as to its degree of sulfidation is based on K-feldspar and kaolinite which are present in significant amounts, whereas APS (aluminum-phosphate-sulfate) minerals are absent. Therefore a categorization as an epithermal fluorite deposit of low- to intermediate sulfidation is justified, because the only mineral of economic interest in the system is fluorite.The data obtained during this joint study render the Patagonian fluorite district a reference type of fluorite in an epithermal system of low- to intermediate sulfidation which are widespread in Argentina, e.g., Sierras Pampeanas, and evolved on part of the stable craton, called Gondwana and which grade into epithermal Au, Ag, In, Pb and Zn deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号