首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   3篇
海洋学   1篇
  2021年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
2.
Antimony (Sb) is a toxic element and belongs to group 15 of the periodic table, under arsenic (As). The geochemical behavior of Sb in the environment is still largely unknown. Since the behavior of Sb in the environment depends on its oxidation state, Sb analysis in environmental samples requires quantitative measurement of Sb (Ⅲ) and Sb (Ⅴ). The aim of this study is the speciation of Sb in both solid and water phases to understand the reaction and dynamics of Sb in soil-water system. Accordingly, we employed X-ray absorption fine structure (XAFS) analysis to determine the Sb and As species in soil in laboratory and natural systems, while we also determined the oxidation states in soil water by the conventional HPLC-ICP-MS method. Natural soil and soil water samples containing Sb and As were collected around the Ichinokawa mine pithead, Ehime, Japan. To observe the species under various redox conditions, the soil and soil water samples were collected at four depths. Soil containing Sb and As were incubated for 7 days at 25℃ to observe their oxidation states under various redox condition by changing the total amount of water in the soil. Antimony K-edge XAFS spectra were measured at the beamline BL01B 1 at SPring-8 (Hyogo, Japan) and K-edge XAFS spectra of As, Fe, and Mn at the beamline BL12C in Photon Factory, KEK (Thukuba, Japan). In the natural soil-water system, Sb was present exclusively as Sb (Ⅴ) over a wide redox range (from Eh=-140 to 360 mV; pH 8), while As was present as a mixture of As (Ⅲ) and As (Ⅴ). This trend was confirmed in the laboratory experiments. These results suggest that Sb (Ⅴ) is a very stable form in the environment and that Sb is oxidized under more oxic condition than As. Combining the results of Fe and Mn XAFS analyses and a positive correlation among Sb, As, and Fe abundances in the soil, the host phases of Sb and As in soil were Fe (Ⅲ) hydroxide. EXAFS analyses of Sb and As are also consistent with this fact. Under reducing conditions, the concentrations of As in the soil water increased whereas those of Sb decreased in both the natural and laboratory systems.  相似文献   
3.
电感耦合等离子体质谱(ICP-MS)作为一种高灵敏度的分析技术在痕量超痕量无机元素分析方面已被广泛应用,其与色谱分离技术相结合为元素形态分析提供了强有力的检测工具。本文阐述了近年来利用不同ICP-MS联用技术进行元素形态分析的研究进展,主要包括:(1)气相色谱-电感耦合等离子体质谱联用技术(GC-ICP-MS);(2)毛细管电泳-电感耦合等离子体质谱联用技术(CE-ICP-MS);(3)离子色谱-电感耦合等离子体质谱联用技术(IC-ICP-MS);(4)高效液相色谱-电感耦合等离子体质谱联用技术(HPLC-ICP-MS)。在此基础上归纳总结了中国元素形态分析领域的主要研究情况,对元素形态分析发展前景作了展望。这些联用技术中,GC-ICP-MS的灵敏度高,样品传输率接近100%,但其适用于易挥发或中等挥发性样品的分离,应用范围相对较窄;CE-ICP-MS的分离效率高,样品和试剂消耗量少,但受到其进样量限制使得最低检出浓度较大;IC-ICP-MS主要分析阴离子和阳离子及小分子极性化合物,是液相色谱的有益补充,具有分离效果好和快速方便等优点,但离子色谱流动相中的盐类会造成ICP-MS进样管和采样锥的堵塞,使得基体效应严重;HPLC-ICP-MS以其广泛的应用范围、简单的接口技术,成为元素形态分析研究中应用最广泛的联用技术。本文认为,元素形态分析研究中开展复杂基体样品前处理方法研究,研制系列元素形态分析标准物质,建立多元素形态同时分析方法是元素形态分析领域的发展方向。  相似文献   
4.
Coupled HPLC-ICP-MS has been used to quantitatively study the effects of GSSG and GSH on the ability of metallothionein (MTII) to donate essential and non-essential metals to apo-carbonic anhydrase. Stable isotopically labeled (67)Zn(3)Cd(4) MTII was used to enable Zn donated from MTII to be differentiated from extraneous sources of Zn. Transfer of both (67)Zn and Cd from MTII to apo-carbonic anhydrase was noted in the absence of either GSSG or GSH. GSSG increased the initial transfer of both Zn and Cd. Thereafter, a gradual increase in the (67)Zn content at the expense of Cd was noted over 24-h indicating continued interaction and exchange between MTII and the enzyme commensurate with the relative preferences shown by the proteins for these two metals. Although GSH also increased transfer of (67)Zn from MT it reduced the simultaneous transfer of Cd to the enzyme thereby conferring protection against Cd induced activation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号