首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   38篇
  国内免费   49篇
测绘学   4篇
地球物理   48篇
地质学   212篇
海洋学   11篇
天文学   3篇
综合类   4篇
自然地理   23篇
  2024年   1篇
  2023年   6篇
  2022年   2篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   7篇
  2017年   5篇
  2016年   19篇
  2015年   11篇
  2014年   7篇
  2013年   19篇
  2012年   5篇
  2011年   5篇
  2010年   12篇
  2009年   13篇
  2008年   16篇
  2007年   10篇
  2006年   19篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   8篇
  2001年   8篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
1.
Reconstructions of the timing and frequency of past eruptions are important to assess the propensity for future volcanic activity, yet in volcanic areas such as the East African Rift only piecemeal eruption histories exist. Understanding the volcanic history of scoria-cone fields, where eruptions are often infrequent and deposits strongly weathered, is particularly challenging. Here we reconstruct a history of volcanism from scoria cones situated along the eastern shoulders of the Kenya–Tanzania Rift, using a sequence of tephra (volcanic ash) layers preserved in the ~250-ka sediment record of Lake Chala near Mount Kilimanjaro. Seven visible and two non-visible (crypto-) tephra layers in the Lake Chala sequence are attributed to activity from the Mt Kilimanjaro (northern Tanzania) and the Chyulu Hills (southern Kenya) volcanic fields, on the basis of their glass chemistry, textural characteristics and known eruption chronology. The Lake Chala record of eruptions from scoria cones in the Chyulu Hills volcanic field confirms geological and historical evidence of its recent activity, and provides first-order age estimates for seven previously unknown eruptions. Long and well-resolved sedimentary records such as that of Lake Chala have significant potential for resolving regional eruption chronologies spanning hundreds of thousands of years.  相似文献   
2.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
3.
Obsidian is abundant in the Main Ethiopian Rift (MER). Petrological and geochemical features of obsidian from four volcanic centers in the MER, namely Birenti, Dofen, Fentale and Kone, are presented. Compositional and petrological variability is noted among the Dofen and Fentale obsidian, but not in those from Kone and Birenti where each have separate but uniform elemental composition. The Fentale and Kone obsidian were source materials for the artifacts of a number of Middle Stone Age and Later Stone Age/Neolithic sites in the region. We have yet to determine whether Dofen and Birenti were sources for archeological artifacts. The study also shows that volcanic episodes from a single center do not necessarily result in compositional variability.  相似文献   
4.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   
5.
Structural studies of the Barmer Basin in Rajasthan, northwest India, demonstrate the important effect that pre-existing faults can have on the geometries of evolving fault systems at both the outcrop and basin-scale. Outcrop exposures on opposing rift margins reveal two distinct, non-coaxial extensional events. On the eastern rift margin northwest–southeast extension was accommodated on southwest- and west-striking faults that form a complex, zig-zag fault network. On the western rift margin northeast–southwest extension was accommodated on northwest-striking faults that form classical extensional geometries.Combining these outcrop studies with subsurface interpretations demonstrates that northwest–southeast extension preceded northeast–southwest extension. Structures active during the early, previously unrecognised extensional event were variably incorporated into the evolving fault systems during the second. In the study area, an inherited rift-oblique fault transferred extension from the rift margin to a mid-rift fault, rather than linking rift margin fault systems directly. The resultant rift margin accommodation structure has important implications for early sediment routing and depocentre evolution, as well as wider reaching implications for the evolution of the rift basin and West Indian Rift System. The discovery of early rifting in the Barmer Basin supports that extension along the West Indian Rift System was long-lived, multi-event, and likely resulted from far-field plate reorganisations.  相似文献   
6.
The San Jorge Gulf Basin, located in Central Patagonia, has been interpreted as a Jurassic-Cretaceous rift basin that was later inverted mainly in its western sector. Consequently, the Bernardides System formed as a set of foreland contractional structures that constitute the core of the Patagonian broken foreland, exhuming continental deposits of the Cretaceous Chubut Group, 500 km away from the Pacific trench. In spite of the intense research done in the San Jorge Gulf Basin many aspects remain under discussion, particularly those regarding the age of uplift of the Bernárdides System. In order to unravel the tectonic evolution of the western San Jorge Gulf Basin (Río Mayo Sub-Basin), we analyzed subsurface information (2D and 3D seismic lines and oil wells) located in the western area of the basin and compared this with surface data of the southern Bernárdides System. Based on our interpretation, the western part of the basin could have been uplifted in a series of deformational events that began as early as late Early Cretaceous, related to the initial uplift of the Patagonian broken foreland, during the early stages of South Atlantic opening. Subsequent stages of tectonic reactivation identified in this system have selectively inverted previous extensional structures according to the variable direction of the greatest horizontal stress (σ1) acting at each time.  相似文献   
7.
华北克拉通在中生代以来遭受了显著破坏。前人的研究对克拉通破坏的机制和峰期取得了较大共识, 但是关于克拉通破坏的启动时间一直存在争议。本文通过对冀北金台子中生代盆地构造特征及其填充的火山岩地球化学和年代学进行分析, 为华北克拉通破坏启动时间提供新的约束。研究表明, 金台子盆地为一伸展断陷盆地。盆地呈北东-南西向展布, 东侧被正断层控制, 西侧为地层超覆边界。盆地内自下而上发育后城组、白旗组、啕北营组、九佛堂组火山-沉积组合。后城组是一套稳定的河流相红色砂砾岩沉积地层;白旗组和啕北营组主体为巨厚层流纹岩、流纹质凝灰熔岩, 局部夹安山岩和火山碎屑岩;九佛堂组是一套以砾岩、砂砾岩等为主体的碎屑岩。地球化学分析表明金台子盆地中发育的酸性火山岩源于地壳重熔。锆石U-Pb年代学研究显示, 金台子盆地内流纹岩自约145 Ma开始广泛喷发并形成巨厚层的酸性火山岩地层, 表明此时在华北北缘地区的岩石圈减薄和破坏可能就已非常剧烈, 据此华北克拉通在其北缘的破坏至少应早于145 Ma。  相似文献   
8.
Jurassic-Cretaceous rift successions and basin geometries of the Sverdrup Basin are reconstructed from a review and integration of stratigraphy, igneous records, outcrop maps, and subsurface data. The rift onset unconformity is in the Lower Jurassic portion of the Heiberg Group (approximately 200–190 Ma). Facies transgress from early syn-rift sandstones of the King Christian Formation to marine mudstones of the Jameson Bay Formation. The syn-rift succession of marine mudstones in the basin centre, Jameson Bay to Deer Bay formations, ranges from Early Jurassic (Pleinsbachian) to Early Cretaceous (Valanginian). Early post-rift deposits of the lower Isachsen Formation are truncated by the sub-Hauterivian unconformity, which is interpreted as a break up unconformity at approximately 135–130 Ma. Cessation of rift subsidence allowed for late post-rift sandstone deposits of the Isachsen Formation to be distributed across the entire basin. Marine deposition to form mudstone of the Christopher Formation throughout the Canadian Arctic Islands and outside of the rift basin records establishment of a broad marine shelf during post-rift thermal subsidence at the start of a passive margin stage. The onset of the High Arctic Large Igneous Province at approximately 130 Ma appears to coincide with the breakup unconformity, and it is quite typical that magma-poor rifted margins have mainly post-rift igneous rocks. We extend the magma-poor characterization where rifting is driven by lithospheric extension, to speculatively consider that the records from Sverdrup Basin are consistent with tectonic models of retro-arc extension and intra-continental rifting that have previously been proposed for the Amerasia Basin under the Arctic Ocean.  相似文献   
9.
The Mellish Park Syncline is located in the northern part of the Mt Isa terrane. It has an axial trace that transects the remnants of the unconformity‐bounded Palaeoproterozoic Leichhardt and Isa Superbasins. The syncline is separated into a lower and upper component based upon variation in fold geometry across the basin‐bounding unconformity. The lower syncline, in the Leichhardt Superbasin, is tight and has an inclined west‐dipping axial plane. The upper syncline, in the Isa Superbasin, is open and upright. The geometry of the lower syncline is a consequence of a period of shortening and basin inversion which post‐dated the Leichhardt Rift Event (ca 1780–1740 Ma) and pre‐dated the Mt Isa Rift Event (ca 1710–1655 Ma), forming an open and upright north‐oriented syncline. Subsequent southeast tilting and half‐graben development during the Mt Isa Rift Event resulted in the lower syncline being tilted into its inclined geometry. Sequences of the Isa Superbasin were then deposited onto the eroded syncline. The geometry of the upper syncline reflects regional east‐west shortening during the Isan Orogeny (ca 1590–1500 Ma). The position of the upper syncline was largely controlled by the pre‐existing lower syncline. At this time the lower syncline was reactivated and tightened by flexural slip folding.  相似文献   
10.
ABSTRACT

The Neoproterozoic Kaijianqiao Formation is one of the most important pre-Sturtian rift successions in South China and there has long been a lack of reliable geochronological constraints for its minimum depositional age. In this study, new zircon U-Pb ages of volcaniclastic rocks from the topmost Kaijianqiao Formation are presented. The youngest SHRIMP and LA-ICP-MS zircon 206Pb/238U weighted mean ages of the tuff sample are 715.0 ± 9.8 and 718.8 ± 9.4 Ma, respectively. The youngest LA-ICP-MS zircon 206Pb/238U weighted mean age of the tuffaceous siltstone sample is 720.8 ± 7.4 Ma and represents the maximum depositional age of the topmost Kaijianqiao Formation. The results show that the minimum depositional age of the Kaijianqiao Formation in the western Yangtze Block should be ca. 715 Ma, consistent with other pre-Sturtian rift successions in South China, such as the Banxi Group, Chengjiang, and Liantuo formations. Together with the published zircon U-Pb ages, it is demonstrated that the Sturtian glaciation in South China (Jiangkou glaciation) most likely initiated around 715 Ma. In other Rodinia blocks, like Laurentia and Arabia, the Sturtian glaciation probably started between 712 and 717 Ma, thus our new results further support that the Sturtian glaciation was a rapid and globally synchronous event. Other 206Pb/238U zircon ages display five distinct peaks at ca. 751, 780, 799, 819, and 848 Ma, which corresponded to the tectonic-magmatic events related to the break-up of Rodinia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号