首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   151篇
  国内免费   284篇
测绘学   32篇
大气科学   58篇
地球物理   181篇
地质学   938篇
海洋学   40篇
天文学   1篇
综合类   64篇
自然地理   125篇
  2024年   1篇
  2023年   7篇
  2022年   23篇
  2021年   27篇
  2020年   30篇
  2019年   34篇
  2018年   26篇
  2017年   28篇
  2016年   33篇
  2015年   40篇
  2014年   62篇
  2013年   44篇
  2012年   60篇
  2011年   50篇
  2010年   53篇
  2009年   72篇
  2008年   93篇
  2007年   78篇
  2006年   104篇
  2005年   105篇
  2004年   62篇
  2003年   63篇
  2002年   62篇
  2001年   67篇
  2000年   25篇
  1999年   30篇
  1998年   24篇
  1997年   19篇
  1996年   22篇
  1995年   16篇
  1994年   13篇
  1993年   25篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
1.
After a major flood in Jakarta in 2007, the government of Indonesia partnered with a consortium of Dutch engineers and designers to produce a solution. In 2013, this consortium proposed a plan for the Great Garuda, a megaproject that combined a deep seawall and private real estate, both in an archipelago of reclaimed islands that would be shaped like the mythical garuda eagle, Indonesia's national symbol. Despite a range of infeasibilities and opposition, the Great Garuda became the most prominent vision for the city's future. This article argues that the promotion of the Great Garuda was a process of ‘hyper‐planning’, which projected the city as a national triumph and a global spectacle. The plan served the political objective of creating the mere possibility of a ‘new Jakarta’ apart from the perceived chaos of the current capital. Further, the plan functioned as a performative object through its iconic imagery and its circulations. The process of hyper‐planning simultaneously projected a future of urban success, but also displaced the contingencies of the future to the private sector, beyond the purview of the state.  相似文献   
2.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   
3.
近年来,济南岩溶水有机污染越来越突出,为了探究济南岩溶水有机污染对居民健康造成的影响,保障饮用水安全,该文在系统分析研究区水文地质条件的基础上,采用USEPA推荐的健康风险评价模型,根据实际采样测试数据,分析评价了济南东部3处岩溶水井点的有机污染对其范围内暴露人群造成的健康风险。结果表明:检出的主要有机污染物为三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯。3个水井的有机污染非致癌风险未超过限值1,在可接受的范围内,四氯化碳的非致癌风险所占比例最大,为89.85%; 3个采样点有机污染致癌风险,超出了其可接受水平的最小限制10-6,但均未超出可接受的致癌风险的最大限制10-4,风险指数均在10-6~5.0×10-5之间,应该引起关注,产生致癌风险的主要污染物为三氯乙烯。有机污染非致癌风险和致癌风险的主要暴露途径为呼吸吸入,其次是饮水吸收,皮肤接触暴露途径风险值最小。  相似文献   
4.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   
5.
国内外岩溶塌陷监测方法综述   总被引:3,自引:0,他引:3       下载免费PDF全文
岩溶塌陷是全球广泛分布的地质灾害问题,严重影响和制约了岩溶地区社会、经济发展,因此,开展岩溶塌陷监测工作,对塌陷预测预报具有及其重要的作用。岩溶塌陷的监测技术与塌陷形成的机理关系密切。该文分析了岩溶塌陷的分布规律和形成的条件,系统总结了国内外岩溶塌陷的监测内容、技术方法、各自优缺点,如BOTDR监测、TDR监测、地质雷达监测、水动力条件监测及地-沉降等方法,为系统性地开展岩溶塌陷监测工作提供技术和方法参考,展望了未来的岩溶塌陷监测工作,认为岩溶塌陷监测需结合塌陷的形成机理、塌陷地区覆盖层特征及水动力条件,综合利用多种监测手段联合进行,并形成完善的监测网络。  相似文献   
6.
淮河流域洪水极值非平稳性特征   总被引:1,自引:1,他引:0  
基于淮河流域9个水文站的月径流量数据,采用Pettitt非参数检验法、GAMLSS模型与洪水频率分析模型等方法,揭示了淮河中上游洪水频率的演变规律,分析基于平稳性和非平稳性条件下的洪水发生强度及洪涝灾害所带来的影响.研究发现:潢川、横排头和蚌埠站点未发生明显变异,其余6个站点发生均值或方差变异,变异时间主要集中在2000年左右.淮河流域的最优拟合分布函数是Weibull;班台、蒋家集和横排头站适宜于非平稳性模型,其余站点选择平稳性模型.各站点非平稳性条件下10年和20年一遇设计流量值与平稳性条件下皮尔逊Ⅲ型分布设计流量值相差不大,但30年一遇、50年一遇和100年一遇的设计流量相差逐渐变大.横排头站和蚌埠站洪水放大因子随着时间增加呈上升趋势且大于1,百年一遇重现期不足80年.各站点年最大洪峰流量与淮河流域、安徽省水灾面积通过了95%或99%的显著性检验.  相似文献   
7.
周南  李卿  喻涌麒 《云南地质》2020,(1):118-124
位于云南省楚雄州武定县朱家坝新建尾矿库,在使用过程中,该尾矿库下游一泉水点出现尾矿粉渗漏污染,通过地质勘查,发现该尾矿库下伏昆阳群绿汁江组(Pt2lz)的白云岩基底,存在一隐伏断层,渗漏污染原因与该断层及其形成的岩溶裂隙有直接的关系。  相似文献   
8.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
9.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   
10.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号