首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   2篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This study presented a detailed comparison of daily precipitation estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) Multi -satellite Precipitation Analysis (TMPA) over Hunan province of China from 1998 to 2014. The ground gauge observations are taken as the reference. It is found that overall TMPA clearly outperforms PERSIANN, indicating by better statistical metrics (including correlation coefficient, root mean square error and relative bias). For the geospatial pattern, although both products are able to capture the major precipitation features (e.g., precipitation geospatial homogeneity) in Hunan, yet PERSIANN largely underestimates the precipitation intensity throughout all seasons. In contrast, there is no clear bias tendency from TMPA estimates. Precipitation intensity analysis showed that both the occurrence and amount histograms from TMPA are closer to the gauge observations from spring to autumn. However, in the winter season PERSIANN is closer to gauge observation, which is likely due to the ground contamination from the passive microwave sensors used by TMPA.  相似文献   
2.
The availability of in situ measurements of precipitation in remote locations is limited. As a result, the use of satellite measurements of precipitation is attractive for water resources management. Combined precipitation products that rely partially or entirely on satellite measurements are becoming increasingly available. However, these products have several weaknesses, for example their failure to capture certain types of precipitation, limited accuracy and limited spatial and temporal resolution. This paper evaluates the usefulness of several commonly used precipitation products over data scarce, complex mountainous terrain from a water resources perspective. Spatially averaged precipitation time series were generated or obtained for 16 sub-basins of the Paute river basin in the Ecuadorian Andes and 13 sub-basins of the Baker river basin in Chilean Patagonia. Precipitation time series were generated using the European Centre for Medium Weather Range Forecasting (ECMWF) 40 year reanalysis (ERA-40) and the subsequent ERA-interim products, and the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset 1 (NCEP R1) hindcast products, as well as precipitation estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The Tropical Rainfall Measurement Mission (TRMM) 3B42 is also used for the Ecuadorian Andes. These datasets were compared to both spatially averaged gauged precipitation and river discharge. In general, the time series of the remotely sensed and hindcast products show a low correlation with locally observed precipitation data. Large biases are also observed between the different products. Hydrological verification based on river flows reveals that water balance errors can be extremely high for all evaluated products, including interpolated local data, in basins smaller than 1000 km2. The observations are consistent over the two study regions despite very different climatic settings and hydrological processes, which is encouraging for extrapolation to other mountainous regions.  相似文献   
3.
The emergence of regional and global satellite‐based rainfall products with high spatial and temporal resolution has opened up new large‐scale hydrological applications in data‐sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage and distributed nature of satellite‐based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main advantage of this evaluation methodology is the integration of the rainfall model input in time and space when evaluated at the sub‐catchment scale. An initial data analysis revealed significant biases in the SRFE products and large variations in rainfall amounts between SRFEs, although the spatial patterns were similar. The results showed that the Climate Prediction Center/Famine Early Warning System (CPC‐FEWS) and cold cloud duration (CCD) products, which are partly based on rain gauge data and produced specifically for the African continent, performed better in the modelling context than the global SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC‐FEWS, produced good results with values of R2NS between 0·84 and 0·87 after bias correction and model recalibration. This was comparable to model simulations based on traditional rain gauge data. The study highlights the need for input specific calibration of hydrological models, since major differences were observed in model performances even when all SRFEs were scaled to the same mean rainfall amounts. This is mainly attributed to differences in temporal dynamics between products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号