首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   2篇
地质学   5篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2005年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
在法国Beauvoir花岗岩中,烧绿石-细晶石族矿物是重要的铌钽矿物之一,主要出现在岩体的上部。大部分晶体为自形,白色、谈黄色或谈绿色,粒径为微米至毫米级。30多个电子探针分析结果表明,主要成分为Na、Ca、U、Nb,Ta、F.从岩体的下部到上部,烧绿石族矿物的Nb/(Nb+Ta)比值呈升高的趋势。这些矿物富含铀,Uo_2含量最高达15.05%,部分烧绿石和细晶石为铀烧绿石和铀细晶石;另一方面,在岩体下部,细晶石中Uo_2含量平均为6.3%,而在岩体上部,烧绿石和细晶石中的Uo_2平均含量为9.0%  相似文献   
2.
Arfvedsonite granites are most prevalent in the northern sector of the Nigerian anorogenic ring-complex province wherein they form the main granitic rocks at Kudaru and Fagam and are important components of Kila-Warji, Ririwai and Dutsen-Wai ring-complexes. The albitized variety of these rocks hosts pyrochlore to varying extents depending on the degree of albitization and are, therefore, important targets for niobium investigation. Geochemical data of the granites reveal that niobium has a mean concentration of 111 ppm in the arfvedsonite granite, increasing to 168 ppm in the aegirine arfvedsonite granite and reaching 1568 ppm in the albite arfvedsonite granite. Niobium is thus enriched in the albite arfvedsonite granite by a factor of 8-11 relative to its mean value in the aegirine arfvedsonite and arfvedsonite granites, respectively. Uranium contents show a sympathetic trend with niobium, being also enriched in the albite arfvedsonite granite relative to its abundance in both the aegirine arfvedsonite granite and arfvedsonite granite by a factor of 15. The uranium abundance in the albite arfvedsonite granite is more than 48 times higher than the mean background values in low-calcium granite.The REE fractionation patterns in all three arfvedsonite granite varieties are characterized by enrichment of both the light (La-Sm) and heavy (Gd-Lu) rare earth elements and a significant negative Eu anomaly. The albite arfvedsonite granite is, however, preferentially more enriched in the heavy REE relative to the aegirine arfvedsonite and the arfvedsonite granites. A plot of the ∑REE against Na2O and niobium reveals positive correlation in the arfvedsonite granites. There is also a linear relationship and strongly positive correlation between Nb and Na2O because the pyrochlore is most abundant in the most extensively albitized variety of the arfvedsonite granites.  相似文献   
3.
Niobium (Nb) in carbonatite is mainly hosted in fluorcalciopyrochlore and columbite-(Fe). Information related to Nb petrogenesis is useful for understanding the processes related to Nb mineralization and carbonatite evolution. The Saint-Honoré, Quebec, alkaline complex offers a rare opportunity for studying these processes as the complex is not affected by post-emplacement deformation, metamorphism nor weathering. Columbite-(Fe) is shown to be an alteration product of fluorcalciopyrochlore (columbitization). Columbitization is characterized by the leaching of Na and F from the A- and Y-sites of the pyrochlore crystal structure. As alteration increases, Fe and Mn are slowly introduced while Ca is simultaneously leached. Leached Ca and F then crystallize as inclusions of calcite and fluorite within the columbite-(Fe). A-site cations and vacancies in the crystal structure of fresh and altered pyrochlores demonstrate that pyrochlore alteration is hydrothermal in origin. Moreover, halite is a ubiquitous mineral in the Saint-Honoré alkaline complex. Petrographic evidence shows that halite forms in weakly altered pyrochlores, suggesting halite has a secondary origin. As alteration increases, halite is expelled by the hydrothermal fluid and is carried farther into the complex, filling factures throughout the carbonatite. The hydrothermal hypothesis is strengthened by significant enrichments in Cl and HREEs in columbite-(Fe). Chlorine is most likely introduced by a hydrothermal fluid that increases the solubility of REEs.  相似文献   
4.
As well as world class Fe and REE resources the Bayan Obo mineral deposits also hosts significant niobium resources(estimated as 2.2 Mt Nb with an average grade of 0.13 wt% Nb).Niobium in this study is primarily hosted in aeschynite-(Ce) and(Nd),but with subsidiary amounts of pyrochlore,fergusonite-(Ce),fersmite and columbite.Here we report on the paragenetic and textural setting of aeschynite,pyrochlore and fergusonite in the main ore bodies and in a carbonatite dyke.Niobium in a carbonatite sample is hosted in a phase tentatively(due to significant Ca,Mn and Ti contents) identified as fergusonite-(Ce).Aeschynite occurs overgrowing foliation in banded ores,in fractures and vugs in aegirine-rich rocks and in calcite veins.The composition in all settings is similar,but some examples in banded ores develop significant zonation in Y,Th and the REE,inferred to relate to buffering of halogen acid species to low levels by dissolution and fluoritisation of calcite,and the preferential precipitation of LREE from solution due to lower mineral solubility products compared to the HREE.Although lower in total concentration the ratios of REE in pyrochlore are similar to those of aeschynite and suggest the same metal source.The crystallisation of pyrochlore probably relates to growth in paragenetic settings where carbonates had already been eliminated and hence the buffering of F-species activities in the hydrothermal fluid was reduced.Both aeschynite and pyrochlore show evidence of alteration.Primary alteration of aeschynite resulted in leaching of A-site cations(Ca,REE,Th) and Nb,addition of Fe,and ultimately replacement by Ba-Ti phases(baotite and bafertisite).Secondary,metamictisation enhanced,possibly supergene alteration of pyrochlore resulted in hydration,leaching of A-site cations leading to the development of lattice vacancies and increases in Si.The presence of hydrothermal Nb resources at Bayan Obo suggests there may be potential for further Nb discoveries in the area,whilst the trends in element mobility during alteration have significant implications for the utility of A-B oxides as components of materials for immobilisation of radionuclides.  相似文献   
5.
The Catalão I alkaline–carbonatite–phoscorite complex contains both fresh rock and residual (weathering-related) niobium mineralization. The fresh rock niobium deposit consists of two plug-shaped orebodies named Mine II and East Area, respectively emplaced in carbonatite and phlogopitite. Together, these orebodies contain 29 Mt at 1.22 wt.% Nb2O5 (measured and indicated). In closer detail, the orebodies consist of dike swarms of pyrochlore-bearing, olivine-free phoscorite-series rocks (nelsonite) that can be either apatite-rich (P2 unit) or magnetite-rich (P3 unit). Dolomite carbonatite (DC) is intimately related with nelsonite. Natropyrochlore and calciopyrochlore are the most abundant niobium phases in the fresh rock deposit. Pyrochlore supergroup chemistry shows a compositional trend from Ca–Na dominant pyrochlores toward Ba-enriched kenopyrochlore in fresh rock and the dominance of Ba-rich kenopyrochlore in the residual deposit. Carbonates associated with Ba-, Sr-enriched pyrochlore show higher δ18OSMOW than expected for carbonates crystallizing from mantle-derived magmas. We interpret both the δ18OSMOW and pyrochlore chemistry variations from the original composition as evidence of interaction with low-temperature fluids which, albeit not responsible for the mineralization, modified its magmatic isotopic features. The origin of the Catalão I niobium deposit is related to carbonatite magmatism but the process that generated such niobium-rich rocks is still undetermined and might be related to crystal accumulation and/or emplacement of a phosphate–iron-oxide magma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号