首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   14篇
  国内免费   14篇
测绘学   1篇
地球物理   1篇
地质学   66篇
海洋学   5篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   3篇
排序方式: 共有78条查询结果,搜索用时 109 毫秒
1.
Rhenium–osmium geochronometry for samples with low Re and complex matrices requires improved Re extraction methods. Here, we investigate plausible controls on efficiency and efficacy of Re extraction during our anion resin bead purification. Four different protocols are compared, each isolating a single variable to test. Rhenium concentrations for solutions at each step of each protocol document differences in chemical recovery/yield. The negative‐thermal ionisation mass spectrometry (N‐TIMS) signal intensity serves as a proxy for Re yield and purity. These data document correlations between the N‐TIMS signal intensity and (a) the duration of anion resin bead conditioning prior to loading with Re‐bearing solution, and (b) both duration and strength of nitric acid used during rinsing of the Re‐loaded anion resin bead. The optimal protocol improved Re signal intensity around fourteen times compared with our current Re extraction protocol, an aggregate of 2.4 times improvement in chemical recovery (yield) and 5.8 times improvement in emission efficiency (purity). Repeated N‐TIMS isotopic measurements on our in‐house Re standard solution (1407) verify that our optimal protocol‐3 does not fractionate Re isotopes. The improved anion resin bead method considerably lowers the Re detection limit and allows Re‐Os isotopic analysis of picogram‐level Re hosted in geological samples with complex matrices.  相似文献   
2.
This work presents new 87Sr/86Sr and δ88/86SrSRM987 isotopic values of thirteen mineral, vegetal and animal reference materials. Except for UB‐N, all our results are consistent with previously published data. Our results highlight intermediate precisions among the best presently published and a non‐significant systematic shift with the calculated δ88/86SrSRM987 mean values for the three most analysed reference materials in the literature (i.e., IAPSO, BCR‐2 and JCp‐1). By comparison with the literature and between two distinct digestions, a significant bias of δ88/86SrSRM987 values was highlighted for two reference materials (UB‐N and GS‐N). It has also been shown that digestion protocols (nitric and multi‐acid) have a moderate impact on the δ88/86SrSRM987 isotopic values for the Jls‐1 reference materials suggesting that a nitric acid digestion of carbonate can be used without significant bias from partial digestion of non‐carbonate impurities. Different δ88/86SrSRM987 values were measured after two independent Sr/matrix separations, according to the same protocol, for a fat‐rich organic reference material (BCR‐380R) and have been related to a potential post‐digestion heterogeneity. Finally, the δ88/86SrSRM987 value differences measured between animal‐vegetal and between coral‐seawater reference materials agree with the previously published results, highlighting an Sr isotopic fractionation along the trophic chain and during carbonate precipitation.  相似文献   
3.
钽矿是我国的紧缺资源,近年来对别也萨麻斯地区钽矿取得了找矿新进展,包括新矿点的发现以及花岗伟晶岩型稀有金属资源的找矿突破。区内伟晶岩脉广泛发育,为探究含矿脉体的成矿时代、查明区内典型铌钽矿物的矿物学特征,本文以L18号伟晶岩脉中的钽锰矿为研究对象,对其物理性质、化学成分、地质年代等进行了分析。应用电子探针测试钽锰矿的化学组成,热电离质谱法(TIMS)测定其U-Pb年龄,确定含矿脉体的形成年代。结果表明,研究区钽锰矿中Ta_2O_5含量为51.58%~74.80%,均值68.49%,Nb_2O_5含量为6.15%~27.63%;部分主量元素分布不均,未表现出规律的分带性,但矿物颗粒中心部位的CaO含量较边部低,横剖面上SiO_2含量相对稳定,TiO_2与WO_3显示不规律波动。这种特征表明钽锰矿并非单纯由结晶分异作用形成,而是可能受到了后期交代作用的影响。钽锰矿的U-Pb年龄为160Ma,说明钽锰矿化发生于晚侏罗世早期,与围岩海西期二云母花岗岩相差甚远,后者并非L18号脉体的成矿母岩。  相似文献   
4.
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re‐Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N‐TIMS) measurement results of pure Os, pure Re, and two synthetic Re‐Os‐bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re‐Os isotope ratio measurements. Using this refined approach, mean APM and N‐TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N‐TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os‐bearing alloys using the Re‐Os geochronometer that could not be measured by conventional measurement principles.  相似文献   
5.
N(187Os)/N(188Os) ratios of six geological reference materials were measured using static Faraday cups (FCs) with 1013 Ω amplifiers by N‐TIMS. Our results show that the repeatability precision was 2–3‰ (2 RSD,= 3), when taking ~ 1 g of BHVO‐2 with 76 pg g?1 of Os mass fraction and ~ 2 g of BCR‐2 with 21 pg g?1 of Os mass fraction for each sample, whether measured by FCs or by secondary electron multiplier. The repeatability precision measured by FCs was 1–0.2‰ (2 RSD,= 3) when taking ~ 1 g of BIR‐2 with 350 pg g?1 of Os mass fraction, ~ 1 g of WGB‐1 with 493 pg g?1 of Os mass fraction or ~ 0.5 g of WPR‐1 with 13.3 ng g?1 of Os mass fraction for each sample, which is much better than those measured by secondary electron multiplier. Instead, when taking ~ 2 g of AGV‐2 with 4 pg g?1 Os mass fraction, the repeatability precision measured by secondary electron multiplier is 3–4‰ (RSD,= 3), which is better than those measured by FCs. Of the six reference materials analysed, WPR‐1 and BIR‐1a are the most homogeneous with regard to Os isotopic composition (2 RSD of 0.08% and 0.23%, respectively) when test portion masses are 0.5–1 g.  相似文献   
6.
A thermal ionisation mass spectrometric technique enabled the abundance of Zn in geological and biological reference materials and water samples to be measured by double spiking isotope dilution mass spectrometry enriched in the 67Zn and 70Zn isotopes. In the past, thermal ionisation mass spectrometry proved to be difficult for low-level zinc isotopic measurements. The size of Zn samples used for isotopic determination, in particular the biological RMs, represents an important breakthrough. These results represent the most accurate and precise concentrations measured for Zn in these samples. The maximum fractional uncertainty was that for TILL-3 (2%), while the minimum fractional uncertainty was 0.7% for both BCR-1 and W-2. The inhomogeneity of Zn in HISS-1 was revealed while other reference materials appeared homogeneous at the 95% confidence uncertainty. The certified concentration of Zn in HISS-1 and IMEP-19 by their producers are 28% and 3.8% higher than the values measured in this work. These are the first Zn concentration measurements in these materials by the isotope dilution-TIMS technique, except for BCR-1, NIES No 9 and IMEP-19. Reducing the blank enabled accurate measurement in water at the ng g-1 level demonstrating the applicability of the technique for low-level Zn samples.  相似文献   
7.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   
8.
This paper describes a technique, which allows precise and accurate Sr isotope measurement combined with trace element analysis of individual melt inclusions, of sample sizes  1 ng of Sr. The technique involves sampling by micro-milling, chemical dissolution, micro Sr column chemistry, TIMS, and ICPMS analyses. A 10% aliquot of each sample solution is used for trace element analysis by double focusing magnetic sector field ICPMS, while Sr is chemically separated from the remaining 90% and used for 87Sr/86Sr determinations by TIMS.During the development of the technique outlined above, we documented in detail the potential sources of blank contributions and their magnitude. The average size and Sr isotope composition of our laboratory total procedural blank during this study was 5.4 pg ± 0.3 pg Sr (n = 21) with an 87Sr/86Sr of 0.7111 ± 0.0002 (2SE, n = 3). The total procedural Rb blank was 1.9 ± 0.7 pg (n = 21). The total procedural blank was found to have minimal effect (< 150 ppm shift) on the 87Sr/86Sr of sample material containing down to  250 pg Sr. Applying a blank correction allows ‘in house’ standards of this size to be corrected back to within 175 ppm of their accepted values. By applying blank corrections we can confidently measure the Sr isotope composition on sample sizes down to  25 pg Sr to an accuracy better than 400 ppm.The utility of the technique is illustrated by application to a suite of melt inclusions from NW Iceland and their host olivines. It is shown that the effect of a small amount of entrainment of the host olivine during sampling of 50 μm melt inclusions has a negligible effect on the measured Sr isotope and trace element composition. Furthermore, where melt inclusions are < 50 μm it is possible to obtain Sr isotope and trace element data on multiple melt inclusions hosted in a single olivine. This provides similar information to that of the single melt inclusions.  相似文献   
9.
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.  相似文献   
10.
In 2005 Geostandards and Geoanalytical Research embarked upon a new initiative for its readers. Key researchers in various fields of geoanalytical technique development and their application were identified and invited to provide reviews pertinent to their expertise. As noted in the first of these publications "…instead of revisiting the historical context or decades of development in each analytical technique, the goal here has been to capture a snapshot of "hot topics" across a range of fields as represented in the… literature" (Hergt et al . 2005). Rather than prepare an annual review, a decision was taken earlier this year to provide a biennial summary of progress and accomplishments, in this case for the years 2004–2005. The principal techniques employed in Earth and environmental sciences are covered here, and include laser ablation and multicollector ICP-MS, ICP-AES, thermal ionisation and secondary ion mass spectrometry, as well as neutron activation analysis, X-ray fluorescence and atomic absorption spectrometry. A comprehensive review of the development of reference materials, often essential to these techniques, is also provided. The contributions assembled serve both to keep readers informed of advances they may be unfamiliar with, but also as a means of showcasing examples of the breadth and depth of work being conducted in these fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号