首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   13篇
地质学   20篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   13篇
  2003年   1篇
  2002年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
桂宝林 《云南地质》2004,23(4):421-433
煤层气盆地、煤层气系统、煤层气区带的存在及发育程度是煤层气藏形成的充分与必要条件。恩洪盆地和老厂一圭山盆地老厂煤矿区具备了形成煤层气藏的条件。研究其形成煤层气藏的特定条件,总结其煤层气藏模式,是煤层气勘探目标评价的基础。  相似文献   
2.
林玉成 《云南地质》2004,23(4):503-508
煤层气的开发利用是集开发新的高效洁净能源、有利煤矿生产安全、有利大气环保于一身的崭新的绿色工程。本文概略介绍我省煤层气勘探及研究工作进展情况,强调云南丰富的煤层气资源,应是云南的资源优势。  相似文献   
3.
滇东地区有较丰富的煤炭和煤层气资源。中美合作项目"云南恩洪和老厂地区煤层气资源开采对外合作",属我国煤层气勘探开发对外合作项目之一。开展二年来,取得丰硕成果。本文介绍我省的煤层气资源,我国煤层气开发鼓励政策及相关法规,我国煤层气对外合作的基本原则和合作模式,我省煤层气勘探开发合作项目的进展及取得的成果。  相似文献   
4.
王平  李丽萍  马小平  杨森  汪鸿  张炜 《新疆地质》2012,30(3):355-358
针对沙吉海井田以往未开展过地震勘探,煤层多、局部间距小特点,介绍了研究区主要地震反射波与煤层对应关系.通过对T13、T12、T10、T6反射波研究,采用地震波阻抗反演技术对该区煤层厚度及煤层结构进行解释,查明井田构造形态和主要煤层赋存变化特征,取得了较好地震勘探效果.  相似文献   
5.
黄铁栋  王平  李慧  陈俊  周欢  韦欣 《新疆地质》2011,29(3):324-326
通过对主煤层煤岩组分对比发现,沙尔湖煤田煤显微煤岩组分以惰质组分为主,组分因埋深不同有差异.利用镜质组与惰质组组份含量比例关系,推测煤层在沼泽积水较深还原环境中形成.煤中惰质组分含量较高,说明成煤期地壳缓慢上升,沼泽积水变浅的氧化环境.煤田自西向东主煤层形成时期沼泽积水深浅(地壳升降)变化韵律一致,早期深水中心偏向东部(葛洲坝煤矿方向),晚期深水中心偏向西部(格鑫煤矿方向),东部持续缓慢抬升使成煤阶段处于氧化环境,惰质组含量逐渐增高,并明显高于西部.同时,煤中无机质含量较高,反映当时为水动力条件较弱的成煤环境.据巨厚煤层产出、聚煤中心赋存(直接在二叠系老地层上)和煤层稳定性及变化趋势多方煤层特征,认为沙尔湖煤田巨厚煤层的形成具异地成煤特点.  相似文献   
6.
采取多种手段相结合的研究方法,对山东兖州煤田16号煤层的成煤植物进行了详细的研究。研究了16号煤层中的煤核植物群,还通过孢粉分析及分散角质层的研究,对成煤植物群及其在垂向上的演化进行了细致的研究。结合煤岩光片中煤植体的研究,并对照煤系地层大化石所反映的成煤期前后的植物群面貌恢复了16号煤层的成煤植物群。分析并讨论了上述研究方法在反映成煤植物及其演化方面的作用,认为只有通过这种综合研究才可以较准确地反映成煤植物群面貌及其在成煤过程中的变化。  相似文献   
7.
This study presents a new geostatistical approach to characterization of the geometry and quality of a multilayer coal deposit using the data of seam thickness as a geometric property and the contents of ash, sodium, total sulphur, and the heating value as quality properties. A coal deposit in East Kalimantan (Borneo), Indonesia, which has a synclinal geological structure, was chosen as the study site. Semivariogram analysis clarified the strong dependence of heating value on ash content in the top and bottom parts of each seam and the existence of a strong correlation with sodium content over the sub-seams in the same location. The correlations between the geometry and quality of the seams were generally weak. A linear coregionalization model was used to derive the spatial correlation coefficients of two variables at each scale component from the single- and cross-semivariogram matrices. Because the data were correlated spatially in the same seam or over different seams, multivariate techniques (ordinary cokriging and factorial cokriging) were mainly used and the resultant spatial estimates were compared to those derived using a univariate technique (ordinary kriging). A factorial cokriging was effective to decompose the spatial correlation structures with different scales. Another important characteristic was that the sodium content shows distinct segregation: the low zones are concentrated near the boundary of the sedimentary basin, while the high zones are concentrated in the central part. The main component of sodium originates from the abundance of saline water. Therefore, it can be inferred that seawater had stronger effects on the coal depositional process in the central basin than in the border part. The geostatistical modeling results suggest that the thicknesses of all the major seams were controlled by the syncline structure, while the coal qualities chiefly were originated from the coal depositional and diagenetic processes.  相似文献   
8.
Neoproterozoic magmatism in southern Brazil is associated with translithospheric shear belts and strike-slip basins in a post-collisional setting related to the last stages of the Brasilian-Pan African Orogenic Cycle. It evolved from an association of high-K calc-alkaline, leucocratic-peraluminous and continental tholeiitic magmas, to an association with shoshonitic magmas and, eventually, to an association with magmas of the sodic mildly alkaline series. This magmatism varies from metaluminous to peralkaline and exhibits alkaline sodic affinity. A large volcanism is related to this alkaline sodic magmatism and is named the Acampamento Velho Formation. This unit was coeval with subaerial siliciclastic sedimentation in post-collisional basins preserved in the region. The Acampamento Velho Formation consists of pyroclastic and effusive volcanic deposits, which are mainly silicic, emplaced under subaerial conditions. The best exposures of this volcanism occur on the Ramada and Taquarembó plateaus, located southwest of Rio Grande do Sul in southernmost Brazil. The pyroclastic flow deposits are composed mainly of juvenile fragments such as pumices, shards and crystal fragments. Welding is very effective in these units. High-grade ignimbrites occur at the base and intermediate portions of the deposits and rheoignimbrites are observed at the top. The pre-eruptive temperature calculations, which were obtained at the saturation of zircon, revealed values between 870 °C and 978 °C for Taquarembó Plateau and 850 °C–946 °C for Ramada Plateau. The calculated viscosity values vary from 6.946 to 8.453 log η (Pas) for the rheoignimbrites and 7.818 to 10.588 log η (Pas) for the ignimbrites. Zr contents increase toward the top of the pyroclastic sequence, which indicates an increase in peralkalinity and determines the reduction in viscosity for clasts at the upper portions of the flows. The patterns of the structures of the ignimbrites and rheoignimbrites in the Taquarembó and Ramada plateaus accords well with successive pyroclastic flows that halts en masse. In this model the entire pyroclastic flow halts en masse, so complex vertical changes in grain size and composition are interpreted as recording deposition from successive discrete pyroclastic flows. The stratification observed in intermediate units in Taquarembó Plateau might reflect in this case variation in eruptive dynamics and short pauses.  相似文献   
9.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   
10.
The Tiribí Tuff covered much of the Valle Central of Costa Rica, currently the most densely populated area in the country (∼2.4 million inhabitants). Underlying the tuff, there is a related well-sorted pumice deposit, the Tibás Pumice Layer. Based on macroscopic characteristics of the rocks, we distinguish two main facies in the Tiribí Tuff in correlation to the differences in welding, devitrification, grain size, and abundance of pumice and lithic fragments. The Valle Central facies consists of an ignimbritic plateau of non-welded to welded deposits within the Valle Central basin and the Orotina facies is a gray to light-bluish gray, densely to partially welded rock, with yellowish and black pumice fragments cropping out mainly at the Grande de Tárcoles River Gorge and Orotina plain. This high-aspect ratio ignimbrite (1:920 or 1.1×10−3) covered an area of at least 820 km2 with a long runout of 80 km and a minimum volume outflow of 25 km3 (15 km3 DRE). Geochemically, the tuff shows a wide range of compositions from basaltic-andesites to rhyolites, but trachyandesites are predominant. Replicate new 40Ar/39Ar age determinations indicate that widespread exposures of this tuff represent a single ignimbrite that was erupted 322±2 ka. The inferred source is the Barva Caldera, as interpreted from isopach and isopleth maps, contours of the ignimbrite top and geochemical correlation (∼10 km in diameter). The Tiribí Tuff caldera-forming eruption is interpreted as having evolved from a plinian eruption, during which the widespread basal pumice fall was deposited, followed by fountaining pyroclastic flows. In the SW part of the Valle Central, the ignimbrite flowed into a narrow canyon, which might have acted as a pseudo-barrier, reflecting the flow back towards the source and thus thickening the deposits that were filling the Valle Central depression. The variable welding patterns are interpreted to be a result of the lithostatic load and the influence of the content and size of lithic fragments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号