首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   370篇
  国内免费   471篇
测绘学   305篇
大气科学   56篇
地球物理   112篇
地质学   1341篇
海洋学   122篇
天文学   134篇
综合类   66篇
自然地理   45篇
  2024年   2篇
  2023年   19篇
  2022年   57篇
  2021年   92篇
  2020年   82篇
  2019年   65篇
  2018年   29篇
  2017年   50篇
  2016年   77篇
  2015年   58篇
  2014年   88篇
  2013年   63篇
  2012年   102篇
  2011年   144篇
  2010年   114篇
  2009年   109篇
  2008年   124篇
  2007年   121篇
  2006年   84篇
  2005年   84篇
  2004年   70篇
  2003年   69篇
  2002年   66篇
  2001年   55篇
  2000年   52篇
  1999年   39篇
  1998年   45篇
  1997年   38篇
  1996年   32篇
  1995年   31篇
  1994年   28篇
  1993年   24篇
  1992年   20篇
  1991年   17篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   10篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有2181条查询结果,搜索用时 15 毫秒
1.
DEM的提取是激光雷达数据采集的重要用途之一,但由于目前算法的局限性,无法高精度地自动分类,如何在算法分类的基础上重新进行人工分类,以一定的原则和标准进行重提取从而得到更高精度的DEM,仍然是专业领域的一大难题。本文对某.LAS数据重提取,极大提高了其DEM的精度,为今后相关单位和个人使用TerrSolid软件对机载雷达DEM重提取提供一些经验。  相似文献   
2.
GVR机载微波辐射计反演算法适用性分析   总被引:1,自引:0,他引:1  
为研究GVR(G-band water Vapor Radiometer)机载微波辐射计自带反演算法在天津地区的适用性,将2016年北京探空资料分成春夏秋冬,对垂直累积液态水和垂直累积水汽的反演精度进行数值模拟检验。结果表明:垂直累积液态水反演精度随高度变化不明显,春夏秋冬4个季节反演结果相对偏差值范围分别为29%~78%、31%~71%、36%~67%、35%~79%,绝对偏差值范围分别为0.04~0.492 mm、0.075~0.294 mm、0.074~0.315mm、0.116~0.347mm;垂直累积水汽反演精度随高度降低(3000m以上降低更为明显),春、夏、秋、冬4个季节相对偏差3000m以下时分别为2.6%~20.8%、7.9%~19.1%、4.3%~16.5%、3.4%~14.2%,3000m以上时分别为6.4%~89.7%、12.5%~36.9%、13.2%~50%、11.8%~301%。与其他类型机载微波辐射计反演精度及GVR在北极地区地基观测反演精度相比,GVR自带反演算法在天津地区的垂直累积液态水和垂直累积水汽反演精度明显偏低。  相似文献   
3.
五龙金矿床位于五龙矿集区中部,是矿集区内规模大的石英脉型金矿。为查明矿集区深部构造及指导深部找矿预测,需结合深部地球物理资料综合分析研究。本文基于五龙矿集区航空探测任务,并结合其成矿地质特征,研究了五龙金矿在平面、剖面、空间等维度的航磁、航空TEM、航空大地电磁特征及其找矿意义。研究表明:平面上矿体位于鸡心沟断裂东侧负磁背景场中NE与近SN、NW向弱磁异常带交汇处,中等 强剩余磁异常带的转折端、梯度带,视电阻率低阻区及中低阻梯度带,深部存在团块状视磁化率高值区;剖面上矿体位于“左低右高,上高下低”的视电阻率梯度带上,呈中低阻、低阻特征及强磁场区至弱磁场区的视磁化率梯度带上,呈浅部“上高下低”、深部“下高上低”的中等 弱磁特征;空间上矿体位于鸡心沟断裂东侧的断裂构造低阻带与岩体高阻异常带的梯度带。五龙金矿地质地球物理找矿标志的建立和深部高视磁化率异常区的存在,表明矿区深部1000~2000m空间与五龙金矿体视电阻率、视磁化率特征相似的地段,仍具有较好找矿潜力。  相似文献   
4.
用电感耦合等离子体质谱法(ICP-MS)测定地质样品中的稀土及难熔元素,混合酸敞开酸溶法和碱熔融法是两种主要的溶样方法。但地质样品组分复杂,元素之间存在相互共生的现象,对于特殊元素、特殊样品用传统酸溶法会造成部分元素消解不完全,使测定结果不准确;而碱熔法的操作过程繁琐,且溶液盐度高,易产生基体干扰和堵塞仪器进样系统。本文改进了传统四酸和五酸体系,采用氢氟酸-硝酸-硫酸敞开酸溶体系,用国家一级标准物质制作标准曲线测定15种稀土元素,方法准确度(ΔlgC)为0.001~0.027。同时改进了偏硼酸锂碱熔法,样品用偏硼酸锂碱熔提取,加入氢氧化钠调节溶液至碱性条件,所测元素与偏硼酸锂共沉淀后过滤分离熔剂,再用硝酸复溶测定15种稀土元素及铌钽锆铪。两种溶样方法的测定值与认定值的相对误差为1.09%~9.30%。将混合酸敞开酸溶法测定稀土元素、偏硼酸锂碱熔法测定铌钽锆铪的结果与其他实验室密闭酸溶法相比,两组数据的相对偏差为0.13%~15.32%。本实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。  相似文献   
5.
基于广义模型约束的时间域航空电磁反演研究   总被引:1,自引:0,他引:1       下载免费PDF全文
由于航空电磁具有海量数据,因此快速有效的成像和反演手段至关重要.本文针对层状介质模型推导与实现了广义模型约束条件下时间域航空电磁一维反演.从正则化反演的目标函数出发,通过改变模型约束项构造Lp范数反演和聚焦反演,进而通过改变模型求解域构造出基于小波变换的稀疏约束反演.针对不同反演方法目标函数的构建方式,本文进一步从数学原理上分析不同反演方法的预期效果,并通过理论模型和实测数据进行验证.结果表明L0.8范数反演、聚焦反演和基于小波变换的稀疏约束反演可以得到更符合地下层状介质陡变界面的反演结果.  相似文献   
6.
机载LiDAR点云的分类是利用其进行城市场景三维重建的关键步骤之一。为充分利用现有的图像领域性能较好的深度学习网络模型,提高点云分类精度,并降低训练时间和对训练样本数量的要求,本文提出一种基于深度残差网络的机载LiDAR点云分类方法。首先提取归一化高程、表面变化率、强度和归一化植被指数4种具有较高区分度的点云低层次特征;然后通过设置不同的邻域大小和视角,利用所提出的点云特征图生成策略,得到多尺度和多视角点云特征图;再将点云特征图输入到预训练的深度残差网络,提取多尺度和多视角深层次特征;最后构建并训练神经网络分类器,利用训练的模型对待分类点云进行预测,经后处理得到分类结果。利用ISPRS三维语义标记竞赛的公开标准数据集进行试验,结果表明,本文方法可有效区分建筑物、地面、车辆等8类地物,分类结果的总体精度为87.1%,可为城市场景三维重建提供可靠的信息。  相似文献   
7.
<正>伴随非常规油气资源的勘探开发,油气资源开采的广度和深度进一步扩大,一定程度上缓解了我国油气供需矛盾、保障了我国能源安全,同时有力推动了能源结构战略转型。但同时也对能源地质研究工作提出了新的挑战。有机质成熟度是油气评价的重要参数之一,不同成熟阶段的有机质会对应产出不同成因、不同性质、不同质量的油气,如何准确评价沉积有机质成熟度是当前油气资源勘探开发工作的关键问题之一。前人在科研实践工作中从光学、化学、谱学等角度提出了适用条件各异的成熟度评价方法,在部分地质环境中获得了良好的应用效果,但已有的成熟度指标多受测定方法原理的制约导致其适用性不同程度受限(肖贤明等,2020),制约了油气资源的高质量勘探开发。  相似文献   
8.
国家铀资源评价(NURE)计划实现了覆盖美国本土和阿拉斯加的1∶250000 NTMS图幅航空γ能谱测量和航磁测量,通过简要回顾该计划历程,重点针对NURE中航空地球物理勘查(航空γ能谱和航磁测量),讨论了航空地球物理勘查中测量技术、数据处理及解释方法等。NURE航空测量在铀矿勘查和辐射环境评价、洲际航空地球物理编图等领域发挥了巨大作用,产生了意义深远的影响。在总结NURE航空测量经验和做法的基础上,针对我国航空γ能谱测量勘查现状,建议从国家层面进行顶层设计,尽快实施我国陆域范围内的航空γ能谱和航磁框架性测量,实现对我国陆域航空γ能谱测量全覆盖,建设具有中国特色的航空γ能谱测量与监测体系。  相似文献   
9.
航空重力测量以飞机为载体对重力场数据进行采集。由于气流、飞行状态及机体自身振动等因素的影响,航空重力测量原始数据含有大量的噪声,信噪比高达上万级分之一,因此从原始测量数据中获取弱小重力信号成为航空重力测量系统发展的一个技术难题。本文针对航空重力测量系统将通用卡尔曼滤波公式进行了适应性调整,建立了航空重力异常的数学模型,针对系统测量原理提出了卡尔曼滤波状态方程,解决了重力信号与差分GNSS信号匹配、航空重力弱小信号提取的难题。经过实测的航空重力测量数据验证,提出的航空重力数据解算方法能够高精度地解算出航空重力异常,且优于FIR低通滤波器(目前工程上采用)的解算结果,推进了航空重力弱信号提取技术的发展。  相似文献   
10.
In tropical forests, the penetration ability of airborne laser scanning (ALS) may be limited because of highly dense vegetation cover. However, in the typical planning of ALS surveys, the ability of laser pulses to penetrate forests is not considered. Nine round-trip flight lines covering the area of a tropical forest on the northeast side of the Tsengwen Reservoir in Taiwan were designed in this study. Five flight lines flew at altitudes of 1.525, 1.830, 2.135, 2.440, and 2.745 km, and the other four had pulse repetition frequencies (PRFs) of 100, 150, 200, and 250 kHz. The laser penetration index (LPI) is a quantitative index measuring the penetration ability of the ALS and consists of the ratio of the number of laser pulses reaching the forest floor to the total number of laser pulses. The LPI was used to represent the laser penetration rate and investigate the influence of flying altitude and PRF on the LPI. The results showed that as the flying altitude decreased by 1 km, the average LPI increased by 10%, and as the PRF decreased by 50 kHz, the average LPI increased by 2%. The effect of the LPI on digital elevation models (DEMs) was confirmed by visual images obtained by DEMs at five altitudes. The DEM obtained at an altitude of 2.745 km was coarsely textured, whereas that obtained at an altitude of 1.525 km was finely textured. The in-situ height data obtained from the electronic Global Navigation Satellite System (eGNSS) were compared with the data of the ALS-generated DEMs. The results indicated that when the LPI ≥60%, the height difference between the in situ data and DEM data was not prominent. However, when the LPI <60%, the ALS-derived DEM could be higher or lower than the in-situ height; the largest difference between the two was 1.7 m. The LPI of a forest should be considered for ALS survey planning, especially when consistent DEM precision for large tropical forest areas is paramount.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号