首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   6篇
  国内免费   8篇
大气科学   1篇
地球物理   33篇
地质学   30篇
海洋学   23篇
天文学   1篇
综合类   2篇
自然地理   28篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   9篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   9篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有118条查询结果,搜索用时 46 毫秒
1.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   
2.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   
3.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
4.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   
5.
High resolution, single-channel seismic sparker profiles across the Akademichesky Ridge, an intra-basin structural high in Lake Baikal (Russia), reveal the presence of small sediment mounds and intervening moats in the upper part of the sedimentary cover. Such features interrupt the generally uniform and even acoustic facies and are not consistent with the hemipelagic sedimentation, which is expected on such an isolated high and which would produce a uniform sediment drape over bottom irregularities. The influence of turbidity currents is excluded since the ridge is an isolated high elevated more than 600-1000 m above adjacent basins. The mounded seismic facies, including migrating sediment waves and non-depositional/erosional incisions, strongly suggest that sediment accumulation was controlled by bottom-current activity. We interpret the mounds as small-scale (< few tens of km2 in area) lacustrine drifts. Four basic types of geometry are identified: 1) slope-plastered patch sheets; 2) patch drifts; 3) confined drifts; 4) fault-controlled drifts. The general asymmetry in the sedimentary cover of the ridge, showing thicker deposits on the NW flank, and the common location of patch drifts on the northeast side of small basement knolls indicate that deposition took preferentially place at the lee sides of obstacles in a current flowing northward or sub-parallel to the main contours. Deep-water circulation in the ridge area is not known in detail, but there are indications that relatively cold saline water masses are presently flowing out of the Central Basin and plunging into the deep parts of the North Basin across the ridge, a process that appears to be driven mainly by small differences in salinity. We infer that the process responsible for the observed bottom-current-controlled sedimentary features has to be sought in these large-scale water-mass movements and their past equivalents. The age of the onset of the bottom-current-controlled sedimentation, based on an average sedimentation rate of 4.0 cm/ky, is roughly estimated to be as least as old as 3.5 Ma, which is generally regarded as the age of the onset of the last major tectonic pulse of rift basin development in the Baikal region.  相似文献   
6.
Chirp sub-bottom profilers are marine acoustic devices that use a known and repeatable source signature (1–24 kHz) to produce decimetre vertical resolution cross-sections of the sub-seabed. Here the design and development of the first true 3D Chirp system is described. When developing the design, critical factors that had to be considered included spatial aliasing, and precise positioning of sources and receivers. Full 3D numerical modelling of the combined source and receiver directivity was completed to determine optimal source and receiver geometries. The design incorporates four source transducers (1.5–13 kHz) that can be arranged into different configurations, including Maltese Cross, a square and two separated pairs. The receive array comprises 240 hydrophones in 60 groups whose group-centres are separated by 25 cm in both horizontal directions, with each hydrophone group containing four individual elements and a pre-amplifier. After careful consideration, it was concluded that the only way to determine with sufficient accuracy the source–receiver geometry, was to fix the sources and receivers within a rigid array. Positional information for the array is given by a Real Time Kinematic GPS and attitude system incorporating four antennas to give position, heading, pitch and roll. It is shown that this system offers vertical positioning accuracy with a root-mean-square (rms) error less than 2.6 cm, while the horizontal positioning rms error was less than 2.0 cm. The system is configured so that the Chirp source signature can be chosen by software aboard the acquisition vessel. The complete system is described and initial navigational and seismic data results are presented. These data demonstrate that the approach of using fixed source-receiver geometry combined with RTK navigation can provide complete 3D imaging of the sub-surface.  相似文献   
7.
A 140 km long wide-angle seismic profile has been acquired by use of 6 Ocean Bottom Seismographs across the Jan Mayen Ridge, North Atlantic. The profile was acquired twice; once with a traditionally tuned standard source and secondly with a somewhat smaller source tuned on the first bubble pulse. Analysis of the frequency content of the data reveals that the single-bubble source within the 10-15 Hz frequency range generates a signal with a level about 5 db above that of the standard source. These differences can partly be related to differences in airgun depth. The higher output level for these frequencies enables the single-bubble source to resolve intra-crustal structures with a higher degree of certainty, when compared to the data acquired by use of the standard source array. The standard source seems to generate slightly more energy for frequencies around 6 Hz, probably due to the use of a large 1200 in/sup3 gun in this array. These low frequencies a re of importance for mapping of lower crustal and upper mantle structures, and it is recommended that this is taken into account when seismic sources for mapping of deep crustal and upper mantle structures are designed.  相似文献   
8.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   
9.
The Bay of Oran is part of the northern Algerian continental margin, located in the Western Mediterranean Sea between Europe and northern Africa. A regional terrace in ca. 320 m water depth described in earlier studies and a second deeper located one (∼1200 m water depth) provide an unusually vast amount of accommodation space for an observed prograding wedge. Seismo-stratigraphic interpretation of high-resolution reflection seismic data show different phases of mixed cool-water carbonate-siliciclastic deposition: (Ia) Initial aggradation with low dipping foreset deposition during early-Pliocene relative sea-level highstand. (Ib) Deposition transitions to progradation when aggradation reaches the base level. (IIa) Once progradation reaches the shelf break, terrace deposition is reduced to coarse fraction foreset deposits until it ceases entirely. (IIb) Finer sediments are bypassed and start to aggrade on the lower slope terrace until deposits reach the shelf terrace depth. (III) Due to accommodation space prolongation progradation recommences. Phase IIa and phase III deposits are separated by a hiatus. A drop in mean sea-level during the mid-Pleistocene will have caused the base level to fall below the upper strata, hence causing some reworking and redeposition. However, sea-level variations are not considered to be a main controlling factor of the depositional sequences. The evolution of this continuous Pliocene–Pleistocene mixed cool-water carbonate-siliciclastic prograding wedge is instead attributed to the controlling factor of this unusually vast amount of accommodation space. In closest proximity to the sea-floor, sparse recent sedimentation in form of 5–10 m thick sediment lobes can be observed in subbottom profiler data only. From a tectonic point of view, a prolongation of the Yusuf Fault into the survey area though expected by other authors could not be supported with the available dataset.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号