首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   5篇
  地质学   6篇
  2019年   2篇
  2018年   4篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
基于岩石图像深度学习的岩性自动识别与分类方法   总被引:1,自引:1,他引:0       下载免费PDF全文
张野  李明超  韩帅 《岩石学报》2018,34(2):333-342
岩石岩性的识别与分类对于地质分析极为重要,采用机器学习的方法建立识别模型进行自动分类是一条新的途径。基于Inception-v3深度卷积神经网络模型,建立了岩石图像集分析的深度学习迁移模型,运用迁移学习方法实现了岩石岩性的自动识别与分类。采用此方法对所采集的173张花岗岩图像、152张千枚岩图像和246张角砾岩图像进行了学习和识别分类研究,通过训练学习建立岩石图像深度学习迁移模型,并分别采用训练集和测试集中的岩石图像对模型进行了检验分析。对于训练集中的岩石图像,每组岩石分别用3张图像测试,三种岩石的岩性分类均正确,且分类概率值均达到90%以上,显示了模型良好的鲁棒性;对于测试集中的岩石图像,每组岩石分别采用9张图像进行识别分析,三种岩石的岩性分类均正确,并且千枚岩组图像分类概率均高于90%,但是花岗岩组2张图像和角砾岩组的1张图像分类概率值不足70%,概率值较其他岩石图像低,推测其原因是训练集中相同模式的岩石图像较少,导致模型的泛化能力减小。为了提高识别精确度,对准确率较低的岩石图像进行截取,分别取其中的3张图像加入训练集进行再训练,增加与测试图像具有相同模式的训练样本;在新的模型中,对3张图像进行二次检验,测试概率值均达到85%以上,说明在数据足够的状况下模型具有良好的学习能力。与传统的机器学习方法相比,所提出的岩石图像深度学习方法具有以下优点:第一,模型通过搜索图像像素点提取物体特征,不需要手动提取待分类物体特征;第二,对于图像像素大小,成像距离及光照要求低;第三,采用适当的训练集可获得较好的识别分类效果,并具有良好鲁棒性和泛化能力。  相似文献
2.
白林  魏昕  刘禹  吴崇阳  陈立辉 《地质通报》2019,38(12):2053-2058
岩石薄片图像的复杂性和多解性,导致岩石薄片分类难度较大。尝试将深度学习方法应用于岩石薄片图像分类。实验选取了安山岩、白云岩、花岗岩等6种常见岩石种类的薄片图像,每类1000张图像作为实验数据,建立了岩石薄片分类的VGG模型,经过9万次训练后,测试集识别准确率达到了82%。对实验结果进行了分析,发现相似组成成分的岩石图像容易混淆,如白云岩与鲕粒灰岩均属于碳酸盐岩,容易相互误判。在安山岩特征图中提取出了斜长石斑晶和微晶及隐晶质或玻璃质基质,在鲕粒灰岩特征图中提取了鲕粒及填隙物中的亮晶方解石,也验证了方法的可靠性。  相似文献
3.
彭伟航  白林  商世为  唐小洁  张哲远 《地质通报》2019,38(12):2059-2066
以常见的16类矿物作为研究对象,收集每一类矿物约1000张图像,按比例划分为训练集、验证集和测试集,通过图像随机选取增加数据的多样性,建立矿物识别InceptionV3模型,训练7万次在测试集上获得81%的识别正确率。通过对损失函数的改进,引入Center Loss损失函数,训练40万次识别准确率提高到86%。对分类的混淆矩阵分析发现,孔雀石等外观特征明显的矿物识别正确率很高,而闪锌矿等与其他矿物容易混淆导致正确率较低。从特征图分析看出,模型很好地提取了孔雀石的放射状特征,矿物图像特征向量聚集程度很高,也说明了模型的可靠性。  相似文献
4.
周永章  王俊  左仁广  肖凡  沈文杰  王树功 《岩石学报》2018,34(11):3173-3178
地质大数据正在以指数形式增长。只有发展智能数据处理方法才有可能追上大数据的超常增长。机器学习是人工智能的核心,是使计算机具有智能的根本途径。机器学习已成为地质大数据研究的前沿热点,它将让地质大数据插上翅膀,并因此改变地质。机器学习是一个源于数据的模型的训练过程,最终给出一个面向某种性能度量的决策。深度学习是机器学习研究中的一个重要子类,它通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。卷积神经网络算法是最为常用的一种深度学习算法之一,它广泛用于图像识别和语音分析等。Python语言在科学领域的地位占据着越来越重要。其下的Scikit-Learn是一个机器学习相关的库,提供有数据预处理、分类、回归、聚类、预测、模型分析等算法。Keras是一个基于Theano/Tensorflow的深度学习库,可以应用来搭建简洁的人工神经网络。  相似文献
5.
徐述腾  周永章 《岩石学报》2018,34(11):3244-3252
矿石矿物鉴定的智能化是智能地质学和智能矿床学的基础技术之一。计算机视觉技术和深度学习理论使矿石矿物鉴定的智能化成为可能。本研究基于深度学习系统TensorFlow,以吉林夹皮沟金矿和河北石湖金矿的黄铁矿、黄铜矿、方铅矿、闪锌矿等硫化物矿物为例,设计有针对性的Unet卷积神经网络模型,有效自动提取矿相显微镜下矿石矿物的深层特征信息,实现镜下矿石矿物智能识别与分类。实验显示,模型在训练过程中,随着训练次数的增加,模型精度在不断增大,损失函数不断减小;经过3000个批处理之后,模型精度和损失函数基本趋于稳定。训练出的模型对测试集中的显微镜镜下矿石矿物照片的识别成功率均高于90%,说明实验所建立的模型,具有很好的图像特征提取能力,能完成镜下矿石矿物智能识别的任务。  相似文献
6.
自Hinton等使用基于卷积神经网络的深度学习模型赢得Image Net分类比赛以来,深度学习的研究席卷了各个行业。通过介绍深度学习的历史,探索国内地质行业中深度学习模型的使用情况,并介绍深度学习的基础概念(如神经元、神经网络、监督学习和无监督学习等)以及深度学习基础模型中的2个重要网络:深度信念网络(DBN)和卷积神经网络(CNN)。在此基础上,类比深度学习在医学等相关领域的应用,提出了深度学习在地质上的几点应用:利用深度学习在计算机视觉上表现出的强大能力,可以对遥感图像进行聚类、对岩石样品图像进行分类、对岩石薄片数据进行描述;利用深度学习对原始数据表现出的强大识别能力,处理地质异常数据,从而确定成矿靶区的可能位置;利用深度学习的特点,对地震前的声信号数据进行处理,从而判断出地震发生前的剩余时间。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号