首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2618篇
  免费   1334篇
  国内免费   811篇
测绘学   209篇
大气科学   137篇
地球物理   647篇
地质学   2893篇
海洋学   372篇
天文学   20篇
综合类   291篇
自然地理   194篇
  2024年   7篇
  2023年   90篇
  2022年   215篇
  2021年   288篇
  2020年   222篇
  2019年   208篇
  2018年   123篇
  2017年   137篇
  2016年   115篇
  2015年   165篇
  2014年   220篇
  2013年   215篇
  2012年   204篇
  2011年   262篇
  2010年   202篇
  2009年   285篇
  2008年   158篇
  2007年   198篇
  2006年   193篇
  2005年   160篇
  2004年   145篇
  2003年   133篇
  2002年   114篇
  2001年   98篇
  2000年   92篇
  1999年   82篇
  1998年   59篇
  1997年   73篇
  1996年   60篇
  1995年   52篇
  1994年   37篇
  1993年   40篇
  1992年   32篇
  1991年   17篇
  1990年   14篇
  1989年   17篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1954年   2篇
排序方式: 共有4763条查询结果,搜索用时 15 毫秒
1.
浅海和俯冲海沟等海域,不仅是矿产和油气资源主潜力区,也是构造地震频发区,其浅表热流和深部温度信息对于了解板块俯冲和岩浆活动等过程至关重要.这些区域浅层地温场和热流场受到底水温度波动(BTV)强烈扰动,其背景热流需由长期观测来获取.在全面分析了国内外海底热流长期观测技术特点后,我们提出了系缆式海底热流长期观测方案,2013年起陆续开展了部分核心技术的预研究及一系列海底、湖底及浅孔试验.结果表明:(1)自主研制的长周期低功耗微型测温单元,在2~36℃的环境下可连续观测1年;系缆式投放与回收方案即使在地形陡峭、1.5 kn流速及无动力定位等条件下仍然可行.(2)南海北部BTV总体随水深变浅而增强,在浅水区对浅层地温场扰动不可忽略.例如,在水深2600~3200 m和850~1200 m海域分别为0.025~0.053℃(17天内)、0.182~0.417℃(2天内),而台西南盆地北坡(水深763 m)夏季的海底热流由浅表的0.69 W·m-2转变为0.83 m以深的-0.25~-0.05 W·m-2.(3)兴伊措和湖光岩玛珥湖BTV向深部传导过程中其幅度逐渐减弱、相位滞后,进而导致热流方向与强度随季节发生变化.而康定中谷浅层(7 m内)地温在不同深度处同步波动,且冬高(35~36℃)夏低(28~32℃).推测为夏季大量降雨所致;其热流浅部低(0.504 W·m-2)深部高(0.901 W·m-2),指示着鲜水河断裂带深部热流体上涌.这些预研究工作为后续系缆式海底热流长期观测系统的正式研制与应用奠定了扎实基础.  相似文献   
2.
徐蒙 《地质与勘探》2023,59(4):901-908
向地球深部进军是我国必须要解决的战略性科技问题,深部钻探是精准探测地球深部的直接手段。随着探测地球深度的增加,深部钻探工程面临着更加复杂的高温高压钻进环境,对高温钻井液的性能提出了更高的要求。近年来,高温钻井液取得了快速发展,国外的高温钻井液抗温能力已超过260℃,而国内高温钻井液技术也在加速发展,目前仍以“三磺”、“聚磺”体系为主,抗高温能力在240℃左右。本文在对比国内外高温水基钻井液进展的基础上,分析总结了国内外主流高温处理剂及高温水基钻井液的种类、功能与工程应用情况,探讨了其在工程应用中存在的问题以及未来的技术发展方向等。提出了未来国内深部钻探高温钻井液面临的关键问题及优先发展方向,主要有研制与优化耐260℃以上高温的处理剂与钻井液体系、开发配套耐高温仪器与系统、控制经济成本以及保护生态环境等方面,将为我国未来实施的万米深地钻探工程奠定技术基础。  相似文献   
3.
自1970年至今,前苏联和俄罗斯在南极东方站持续进行了近50年的冰层钻探活动,先后攻克了包含粒雪层、冰层、冰岩夹层和湖水冻结冰的复杂冰层钻进难题,逐渐形成了一套集热融取芯钻探、电动机械取芯钻探和分支孔钻探等为一体的深冰芯钻探技术。创造了冰层最深干孔钻进深度记录(952.4 m)、最深热融取芯钻进记录(2755 m)、最深冰芯钻探记录(3769.3 m),累计进尺达13000 m,并获取了总长超46 m的含湖水冻结冰样品的冰芯。东方站的钻探活动对极地冰层钻探技术的发展起到了巨大的推动和引领作用,同时积累了宝贵的深冰钻探经验。通过对东方站深冰钻探技术的系统梳理,将为我国正在实施的深冰芯钻探和即将开启的冰下湖科学钻探提供重要的借鉴。  相似文献   
4.
空气潜孔锤钻进技术不仅可以提高钻探效率,而且不损害地热储层,因此在地热井中的应用十分广泛,但是仍受到钻探深度和出水量的限制。在湖南永州舜皇山基岩地热深井钻探过程中,常规牙轮钻进与泥浆钻进工艺存在钻进效率低、堵塞储层、影响出水量的可能。应用空气潜孔锤钻进技术实现了钻探深度的突破,钻探深度达到1820 m,实际出水量400 m3/d,出水温度43 ℃,符合设计指标。本文总结了相应的钻进工艺措施,以期促进对该技术在地热深井中的推广应用。  相似文献   
5.
针对悬臂柱顶有拉梁和无拉梁层间隔震体系的抗震性能问题,运用增量动力分析(IDA)方法进行弹塑性分析,模拟结构从弹性到弹塑性直至最后倒塌的全过程。通过调幅地震动得到相应的层间位移角及峰值加速度,分别绘制单条与多条IDA曲线分析拉梁对隔震结构动力响应的影响,研究两种结构的抗震性能。结果表明:在相同性能点,有拉梁和无拉梁对纤维铰弯矩值和曲率值基本无影响,而在不同性能点,纤维铰状态明显不同;两种体系从正常使用阶段到防止倒塌阶段所需的加速度峰值的差距慢慢增大;在极罕遇地震下,柱顶有拉梁层间隔震体系的下部结构抗震性能要高于柱顶无拉梁层间隔震体系。  相似文献   
6.
黄澎涛 《探矿工程》2021,48(S1):187-194
针对我国目前冲击地压防治工程人员身处冲击危险区域,无法实现区域先行、超前治理的局面,论文提出了矿井冲击地压关键层远程钻孔水力压裂防治技术。分析了我国冲击地压矿井的地质条件和近几年重大冲击地压灾害的特点,认为华北石炭—二叠系煤田和侏罗系煤田很多冲击地压煤矿煤层上覆地层,普遍发育厚层坚硬的砂岩关键层,能量的释放符合冲击地压形成的“3因素”理论。经论证,关键层脆性强,硬度大,易于压裂,利用水力压裂法解除地应力是合适的;井下长钻孔、地面深孔和地面导斜钻孔的施工技术和钻孔水力压裂技术已成熟,实现远程钻孔水力压裂区域性的防治冲击地压是可行的。工业性试验显示,井下长钻孔顺层分段水力压裂长度可达800 m,水压可达40 MPa,裂缝半径为40 m;地面垂直钻孔分段压裂深度可达3000 m,压裂段高>100 m,压力达80 MPa,裂缝半径为100~200 m;地面导斜钻孔水平顺层段长度达1000 m,压力达80 MPa,裂缝半径为100~150 m;压裂前后煤体应力或支架压力的检测数据对比显示,压裂后的应力较压裂前降低了10 MPa以上,满足区域治理的要求,钻孔远程水力压裂在防治冲击地压上较传统方法具有显著超前优势、区域优势、效率优势、安全优势和环保优势,可以做到冲击地压防治区段的无人化,满足区域先行、超前治理的国家要求。  相似文献   
7.
王建伟 《探矿工程》2021,48(3):73-77
为更好地服务深部钻探工程,准确了解冲洗液封堵性能,对6种成膜封堵剂开展了砂床实验、API静失水量实验、流变性能实验及抗温实验等室内实验进行优选与评价。实验结果表明,2号和4号成膜封堵剂在6种成膜封堵剂中封堵性能最好,它们在基浆中的最优加量均为2%,100 ℃温度条件下加入这2种封堵剂的冲洗液具有较好的抗温性能;冲洗液中膨润土含量和处理剂是影响冲洗液封堵性能的2个重要因素:膨润土含量越高,冲洗液封堵性能越好,加入聚合物、降滤失剂等处理剂可以提高冲洗液的封堵性能。砂床实验是评价冲洗液封堵性能好坏的重要依据。  相似文献   
8.
李春  沈立娜 《探矿工程》2018,45(2):56-60
为提高“松科二井”在深井硬岩钻进中的寿命与效率,选用了高性能胎体材料、高强度焊接材料,并采用了合理的钻头结构与水路结构设计,研制的φ216/124 mm金刚石取心钻头在“松科二井”取得了良好的效果,本文介绍了适用于深井硬岩的金刚石钻头的设计及应用效果。  相似文献   
9.
陈豫英  陈楠  任小芳  王勇 《气象》2018,44(1):159-169
提要:利用常规气象观测资料、银川CD多普勒雷达探测资料和ECMWF、T639、WRF、NCEP/NCAR等模式资料,分析了宁夏气象台漏报的2016年8月21日夜间贺兰山东麓历史罕见特大暴雨天气过程的成因,探讨了重大预报误差之缘由和可预报性,结果表明:(1)ECMWF、T639、WRF三种模式均预报宁夏中北部有15 mm以下的降雨,量级显著偏小是漏报诱因;而ECMWF降雨预报结果明显优于其他模式。(2)2016年8月中下旬西太平洋副热带高压持续偏强、位置偏北,21日达最强,在588dagpm线控制下,592dagpm线从宁夏南部东退,受低层切变线、辐合场和低空急流及贺兰山地形的共同影响,引发了宁夏极为罕见的特大暴雨。当地预报员对于极端暴雨事件预报经验匮乏,对副热带高压强盛、位置偏北的极强暴雨环流形势演变了解和认识欠缺。(3)源于东海的中低层偏东气流在西行中形成东南和南风低空急流,并在贺兰山东麓建立一暖性辐合线,由于贺兰山地形阻挡了气流的移动而产生的绕流、摩擦辐合及迎风波抬升,延长了降雨时间,对暴雨的增幅有促进和加强作用,预报中忽视了贺兰山地形对降雨影响。(4)对暴雨预报有效的物理量场θ_(se500)-θ_(se850)0K、θ_(se500)≥337K和θ_(se850)≥337K、K指数≥38℃、LI≤-3、Q_(700)≥12kg·kg~(-1)等指标掌握应用不熟练。分析结果表明:对于8月21日特大暴雨预报员可提前6h确定暴雨落区、订正降雨量级达到暴雨,可做到过程不漏报,但是经订正后的预报无法报出历史罕见的极端暴雨。  相似文献   
10.
Most of the Southeast Atlantic Ocean is abyssal, and global bathymetries suggest that only ~3.2% of the areas beyond national jurisdiction (ABNJ; also known as the high seas, as defined in the United Nations Convention on the Law of the Sea [UNCLOS]) are shallower than 2 500 m. This study mapped bathymetry and characterised substrates in selected seamount summit areas, including several that have been or may become fishing areas. The southernmost location, the Schmitt-Ott Seamount, has exposed volcanic bedrock with surrounding flats covered by thin biogenic sediments and/or coral rubble that appears ancient. At Wüst, Vema, Valdivia and Ewing seamounts the basaltic base appears to be overlain by coral caps and other coral substrates (sheets, rubble). Adjacent summit plains have biogenic sediments of varying thickness. Vema has a flat, roughly circular summit, <100 m deep, with the shallowest point being a 22-m-deep summit knoll; the upper slopes have ancient coral framework, but the summit has a mixture of coralline and volcanic rock and coarse sediments, including extensive areas with coralline algae and kelp forests. Valdivia Bank is a 230-m-deep, flat, rocky area (~11 × 5 km), protruding steeply from the extensive multi-summit Valdivia subarea of the Walvis Ridge. The distribution of past fisheries in the Convention Area of the South East Atlantic Fisheries Organisation (SEAFO) was considered in relation to the new information on bathymetry and substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号