首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   971篇
  免费   262篇
  国内免费   173篇
测绘学   6篇
大气科学   3篇
地球物理   491篇
地质学   770篇
海洋学   10篇
天文学   1篇
综合类   47篇
自然地理   78篇
  2024年   2篇
  2023年   10篇
  2022年   29篇
  2021年   50篇
  2020年   60篇
  2019年   46篇
  2018年   44篇
  2017年   46篇
  2016年   58篇
  2015年   52篇
  2014年   58篇
  2013年   146篇
  2012年   68篇
  2011年   47篇
  2010年   58篇
  2009年   54篇
  2008年   69篇
  2007年   92篇
  2006年   78篇
  2005年   57篇
  2004年   41篇
  2003年   29篇
  2002年   47篇
  2001年   36篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   11篇
  1996年   12篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有1406条查询结果,搜索用时 73 毫秒
1.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
2.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   
3.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   
4.
Managed aquifer recharge is an effective method for utilizing excess flood flows, but clogging of porous media is a limiting factor in the implementation of this water storage technique. In recent years, much research on the physical clogging of porous media during artificial recharge has been conducted. However, the understanding of clogging due to silt‐sized suspended solids (SS) is still inadequate, especially under varying physical conditions. Here, we subjected sand columns to controlled rates of flow and SS suspensions to investigate the influence of media size, SS size, SS concentration, and flow velocity on the clogging of porous media by silt‐sized SS. The results show that the diameter ratio of SS particles to sand grains is the dominant factor influencing the position of physical clogging. As pore velocity increased, the mobility of silt‐sized SS was enhanced and retention in the porous media decreased noticeably. The spatial retention profiles in the porous media were found to vary greatly at different flow velocities. The SS concentration of the infiltrating suspension also dramatically influenced the mobility and deposition of silt‐sized SS particles, such that high concentrations accelerated the clogging process. As the different physical factors changed, the breakthrough curves and retention profiles of silt‐sized SS particles changed obviously and the mechanisms of retention differed. On the whole, clogging position is mainly determined by particle size ratio, but clogging rate is dominated by a variety of factors including particle size ratio, SS concentration, and flow velocity.  相似文献   
5.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large-scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500-km2 area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill-and-spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high-resolution DEM coverage, which can still account for terrain variation in the Prairies.  相似文献   
6.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
7.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   
8.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
9.
岩溶水是指赋存于岩溶孔隙中的地下水,是我国南方生产生活主要用水来源.随着社会对水资源需求的逐步扩大,岩溶水资源的开发利用越发重要.通过定期监测岳麓山泉水流量、电导率、pH值,结合岳麓山岩土层性质和长沙市降雨量,采用统计分析和Spearman秩相关系数法对泉水流量变化和泉水水质定性评价进行研究.研究结果表明,大气降雨对岩溶水进行补给从而使泉水流量增大,泉水流量的改变除与降雨量有关外,还受土壤入渗率和降雨时长的影响.采用Spearman秩相关系数法可定量计算电导率与时间的相关性,间接判断周围环境对泉水水质影响的难易程度,有利于识别电导率代表性位置泉眼,更好地监测和评价岩溶水.土壤酸沉降污染严重或酸雨频繁地区易导致岩溶水pH值呈酸性.对泉水流量和水质的研究有利于科学开发利用岩溶水资源.  相似文献   
10.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号