首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1231篇
  免费   386篇
  国内免费   394篇
测绘学   171篇
大气科学   91篇
地球物理   362篇
地质学   928篇
海洋学   211篇
天文学   60篇
综合类   63篇
自然地理   125篇
  2024年   5篇
  2023年   24篇
  2022年   35篇
  2021年   62篇
  2020年   88篇
  2019年   66篇
  2018年   47篇
  2017年   76篇
  2016年   72篇
  2015年   67篇
  2014年   116篇
  2013年   101篇
  2012年   105篇
  2011年   87篇
  2010年   108篇
  2009年   99篇
  2008年   72篇
  2007年   84篇
  2006年   83篇
  2005年   64篇
  2004年   73篇
  2003年   68篇
  2002年   55篇
  2001年   52篇
  2000年   39篇
  1999年   42篇
  1998年   28篇
  1997年   37篇
  1996年   29篇
  1995年   32篇
  1994年   37篇
  1993年   19篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1978年   1篇
排序方式: 共有2011条查询结果,搜索用时 15 毫秒
1.
The importance of large wood (LW) to riverine functions is well established scientifically and increasingly recognized by river managers in many countries. However, public perceptions largely associate LW with elevated danger and/or need for intervention. Such perspectives are amplified amongst recreational river users (defined here as any individuals that recreate by floating on the water surface of a river) who interact more directly with rivers than the general public and commonly view wood in life-or-death terms. Given that human life occupies a highest-order charge for river managers, they are left in a difficult position when safety appears to conflict with environmental services. LW deficits are perpetuated partly because wood removal, often in the name of safety, is far easier than placing wood in rivers. Further, river restoration practitioners are frequently burdened with expectations and liability unparalleled in built environments. A fundamentally different mindset is necessary to achieve desired ecologic outcomes when working with rivers. Based on two decades of experience as boaters, LW practitioners, and emergency responders, we (1) discuss LW hazard and risk from recreational and management viewpoints, (2) discretize objective and measurable physical properties of LW hazards, and (3) propose a decision framework that implicitly addresses risk by considering LW hazards relative to river use and ambient hazards. The approach is structured to increase objectivity in LW hazard mitigation and diminish asymmetric biases that favor LW removal. Our intent is to build understanding and rational flexibility among risk-averse management, regulatory, and funding entities to facilitate implementation of scientific understanding without undue risk to river users. © 2020 John Wiley & Sons, Ltd.  相似文献   
2.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
3.
为提高海岛测绘的技术手段,将无人机引入海岛地形调查中,以Swallow-P小型固定翼无人机开展惠州市大亚湾虎洲海岛大比例尺测图为例,系统归纳了无人机外业数据采集与内业数据处理的具体流程,并制作了DEM和DOM成果;经过实测地面点精度分析得出虎洲无人机大比例尺测图成果平面位置中误差和高程中误差符合1∶1000测图精度要求。  相似文献   
4.
Fang  Xiuqi  Zheng  Xue  Zhang  Xing 《地理学报(英文版)》2020,30(1):103-118
ENSO is an interannual mode which may be affected by external forcing, such as volcanic eruptions. Based on the reconstructed volcanic eruptions chronology and ENSO sequences, both 195 large volcanic eruptions(VEI≥4) and 398 ENSO(El Ni?o and La Ni?a) events were extracted from 1525 to 2000. An analysis of the correspondence between the large volcanic eruptions and ENSO events was performed by matching the large volcanic eruptions with the types and magnitudes of ENSO events present in the 0–2 years after the eruptions. The results show the following:(1) The percentages of ENSO events within the 3 years after the large eruptions had increased to 68.3% from 31.7% compared with those with no-eruptions in the previous 0–2 years. In addition, the ratio of El Ni?o to La Ni?a events turned from 2:3 to 1:1, and more El Ni?o events occurred in the 0 year after eruptions in the low-latitudes of the Northern Hemisphere and in the tropics but more La Ni?a events occurred in the 0 year after in the high-latitudes of the Northern Hemisphere and the Southern Hemisphere.(2) After the eruptions, the weak(W) El Ni?o events had increased by 8 percentage points and the very strong(VS) El Ni?o events had decreased by 10 percentage points; conversely, there was a decrease by 15 percentage points of the weak La Ni?a events and an increase by 11.4 percentage points of the very strong La Ni?a events. Specifically, the percentages of strong La Ni?a events increased to a peak at 1(+1) year after the eruptions.(3) The percentage of eruptions followed by single-year ENSO was the greatest. The percentage of ENSO events that occurred in the consecutive 2 years following an eruption was approximately equal to the percentage of events that occurred consecutively 3 years following an eruption, and both sets of ENSO magnitudes showed a decreasing trend.  相似文献   
5.
桩基础在水平荷载或地震作用下的承载力计算一直是工程界的一个研究难点,近年来随着建筑、桥梁桩基础的规模大幅增加,基于小规模、小比例尺群桩基础水平承载力试验得出来的结论和计算方法可能会不适应新的计算要求,相关的认识和计算方法需要重新论证和更新。本文针对大规模群桩基础水平承载力效应系数的计算问题,首先对国内外研究进展进行调研,发现现有的规范计算方法可能会高估群桩基础的水平承载力。针对这些问题,对大规模群桩基础的水平承载力效应系数进行有限元数值计算分析,探讨水平承载力效应系数的规律,给出相应的计算方法,并与规范计算方法结果进行对比。本文的研究结果可为相应的工程设计问题提供依据,结果的适用性需要今后进一步的检验。  相似文献   
6.
车载移动测量系统作为一种先进的测绘技术,已广泛应用于大比例尺测图项目中。SSW车载激光建模测量系统能够快速、高效、精确地完成大比例尺测图数据采集、处理等工作。不同比例尺对精度的要求不一样,而本文选择若干试验区,探讨不同的数据采集与处理方式对精度的影响,然后制订相应的精度控制方案,提高数据的精度,满足1∶1 000比例尺测图要求。  相似文献   
7.
杨联锋  段云星 《探矿工程》2020,47(11):44-50
山西省清徐县区域地质调查项目设计800、2000、3000 m科学钻探孔,以调查填补新生界底板埋深控制空白区,各孔钻入基岩30 m完钻。要求全孔取心,岩心采取率≮85%,岩心直径≮60 mm,采用塑料保护管采取原状岩样。针对超深软土层、各组地层特性及厚度未知、钻遇基岩完钻深度未知、大直径高保真全孔取心、项目价格远低于目前市场成本等难题,经过“水源钻机+大提钻取心+长裸眼孔段”实施800 m孔、“岩心钻机+绳索取心+套管固井”实施640 m参数对比孔,创新性使用“水源钻机+绳索取心+长裸眼孔段”工艺完成了2000 m孔的施工。该工艺岩心采取率达到93%,孔径和孔斜符合地质要求,为3000 m孔顺利施工打下了坚实的基础,为同类型项目提供了经验和借鉴。  相似文献   
8.
潮页1井是在潮水盆地布置的第一口页岩气资源调查井,取心质量要求较高,地层有大段泥页岩层段,易水化剥落,施工难度大。本文着重介绍了潮页1井取心工艺、钻头选型、冲洗液技术及井斜控制技术等相关的施工经验。潮页1井采用大口径绳索取心技术,第四系地层以深全井取心,该技术在甘肃地区鲜有可供参考的施工案例,而该井岩心采取率接近90%。钻进过程中通过选用合理的钻进参数和护壁性能较强的冲洗液体系,解决了施工中遇到的地层“打滑”、井壁稳定性差等技术难点,保障了潮页1井的顺利完工。  相似文献   
9.
Large wood (LW) transport can increase greatly during floods, leading to accumulations at river infrastructures. To mitigate the potential flood hazard, racks are a common method to retain LW upstream of endangered settlements or infrastructures. The majority of LW retention racks consist of vertical bars and, therefore, disrupt bedload transport. It can be hypothesized that inclined racks reduce backwater rise and local scour, as wood will block the upper part of the rack, thereby increasing the open flow cross-section below the accumulation. Flume experiments were conducted under clear water conditions to analyse backwater rise and local scour as a function of (1) rack inclination, (2) hydraulic inflow condition, (3) uniform bed material, and (4) LW volume. In addition, the first experiments were performed under live bed scour conditions to study the effect of bedload transport on local scour and backwater rise. Based on the experiments, backwater rise and local scour decrease with decreasing rack angle to the horizontal. LW predominantly accumulated at the upper part of the rack, leading to an open flow cross-section below the accumulation. The effect of rack angle was included in existing design equations for backwater rise and local scour depth. In addition, the first experiments with bedload transport resulted in smaller backwater rise and local scour depth. This study contributes to an enhanced process understanding of wood retention and bedload transport at rack structures and an improved design of LW retention racks. © 2020 John Wiley & Sons, Ltd.  相似文献   
10.
The Beetaloo Sub-basin, northern Australia, is considered the main depocentre of the 1,000-km scale Mesoproterozoic Wilton package of the greater McArthur Basin – the host to one of the oldest hydrocarbon global resources. The ca. 1.40–1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub-basin, together, record ca. 500 million years of depositional history within the North Australia Craton. Whole-rock shale Sm–Nd and Pb isotope data from these sediments reveal sedimentary provenance and their evolution from ca. 1.35 to 0.85 Ga. Furthermore, these data, together with shale major/trace elements data from this study and pyrolysis data from previous publications, are used to develop a dynamic tectonic geography model that links the organic carbon production and burial to an enhanced weathering of nutrients from a large igneous province. The ca. 1.35–1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus that passes up, into more isotopically juvenile Pb values towards the top of the formation. The increase in juvenile compositions coincides with elevated total organic carbon (TOC) contents of these sediments. The coherently enriched juvenile compositions and TOC the upper portions of the Kyalla Formation are interpreted to reflect an increase in nutrient supply associated with the weathering of basaltic sources (e.g. phosphorous). Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim–Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence-bounding unconformity is here interpreted to reflect uplift and erosion of the Derim Derim–Galiwinku LIP, rather than an influx of southern Musgrave sources. A new baddeleyite crystallisation age of 1,312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The unconformably overlying lower and upper Jamison sandstones are at least 300 million years younger than the Kyalla Formation and were sourced from the Musgrave Province. An up-section increase in isotopically juvenile compositions seen in these rocks is interpreted to document the progressive exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter-basin correlations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号