首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  国内免费   5篇
地球物理   12篇
地质学   13篇
海洋学   1篇
综合类   3篇
自然地理   3篇
  2018年   2篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1986年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
An electrochemical model is proposed, which considers the redox conditions and the electrode kinetics at the mineral surface. Advanced modelling of self-potential (SP) anomalies over ore deposits takes into account the course of the redox potential distribution with depth and the oxidation-reduction processes acting at the mineral-electrolyte interface. The application of this model to a SP anomaly in the vicinity of the German Continental Deep Drilling Program (KTB) can explain the surface and borehole data and gives an estimation of the prevailing thermodynamical conditions in the ground.Exclusively, this paper deals with SP anomalies, which are associated with high conductive graphitic layers. It can be concluded that SP-anomalies give an important hint to electronical conducting structures in the earth's crust.  相似文献   
2.
3.
基于自然电位方法的土壤水分入渗过程监测   总被引:2,自引:0,他引:2       下载免费PDF全文
自然电位方法可以应用于水文地球物理领域获取土壤水分入渗特征.通过连续监测野外试验场的自然电位场,获取连续的自然电位平面图,直接获知了土壤水分在平面上的主要入渗区域,同时借助自然电位成像方法,揭示了土壤水分的两个主要通道,并探测出两个地下孔洞的位置,最终在地质雷达剖面图的辅助下证实了上述结论,为水文地球物理领域提供了新的技术手段和方法.  相似文献   
4.
用测井曲线解释冻土层厚度   总被引:1,自引:0,他引:1  
王显烈 《冰川冻土》1991,13(1):91-94
  相似文献   
5.
6.
张贵宾  齐剑玲 《地球科学》1996,21(3):341-344
当利用自然电位法(SP法)在火山岩地区勘探地下水时,发现负的自电异常大小与地下非饱和区厚度之间存在一个线性关系,从理论上对该经验关系进行了探讨,并提出对这一水文地质问题的自电测量解释方法,最后给出法国中央高原LaChainedesPuys地区的勘探结果。  相似文献   
7.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   
8.
1IntroductionThe study area lies in the northern part of Al Jarra village in Di Naim-Al Bayda District (Fig. 1). The area under investigation is characterized by rugged topography and generally covered by base-ment rocks. The northern part of the study ar…  相似文献   
9.
Geophysics For Slope Stability   总被引:2,自引:0,他引:2  
A pre-requisite in slope stability analyses is that the internal structure and the mechanical properties of the soil or rock mass of the slope, are known or can be estimated with a reasonable degree of certainty. Geophysical methods to determine the internal structure of a soil or rock mass may be used for this purpose. Various geophysical methods and their merits for slope stability analyses are discussed. Seismic methods are often the most suitable because the measurements depend on the mechanical properties that are also important in the mechanical calculation of slope stability analyses. Other geophysical methods, such as electromagnetic, electric resistivity, self-potential, and gravity methods, may be useful to determine the internal structure, but require a correlation of found boundaries with mechanical properties.  相似文献   
10.
岩溶塌陷自然电场及其应用   总被引:2,自引:2,他引:0  
流经土洞或岩溶塌陷坑中的地下水破坏了土层的固-液界面离子双电层扩散区中正、负电荷的平衡,引起地下介质(土层)自然极化,形成自上而下的自然电场。土洞或岩溶塌陷在平面上产生自然电位似同心圆负心异常、在剖面上引起极小值异常;自然电位梯度在剖面上出现过零点异常,在平面上呈以零值线为对称轴的正负对称的似“蝴蝶状”异常。岩溶区自然电场法干扰因素主要有工业游散电流等人文干扰电磁场、地下金属管道(线) 自然极化电场、上升或下降泉自然电场、山地电场、炭质灰岩自然电场等。针对岩溶区自然电场法干扰因素特点,本文提出采用避让法、排除法、在线监测法进行消除,并将之应用于广西来宾市吉利村岩溶塌陷探测中。结果表明,自然电位剖面曲线在地面沉陷区中心附近出现极小值异常,自然电位梯度剖面曲线也在相同部位显示过零点异常。水文地质监测钻孔在相应的位置上分别揭露了塌陷堆积物、溶洞和断层破碎带,从而验证了上述自然电场法异常的属性。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号