首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   10篇
  国内免费   6篇
地球物理   1篇
地质学   38篇
海洋学   2篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
陕西大西沟喷流沉积型菱铁矿矿床地质特征及矿床成因   总被引:1,自引:0,他引:1  
陕西大西沟铁矿床位于秦岭造山带山-柞盆地西北部,与银洞子大型银铅矿床毗邻。矿体主要赋存在泥盆系青石垭组中上段,容矿岩石为一套海相复理石碎屑岩和碳酸盐岩建造。矿床的金属矿物主要有菱铁矿、磁铁矿、黄铁矿,其次为黄铜矿、磁黄铁矿等;非金属矿物主要是重晶石、石英、铁白云石,其次为方解石、绢云母、绿泥石、黑云母、斜长石、钠长石、堇青石等,局部地段由于表生氧化和次生富集作用而形成针铁矿、赤铁矿、蓝辉铜矿等。与矿化有关的围岩蚀变较弱,主要有硅化、绢云母化、绿泥石化和碳酸盐化。基于野外地质观察、矿物共生组合和矿石结构构造的系统研究,将大西沟铁矿床的形成划分为3期6阶段,分别是:①喷流沉积期:硅质岩-黄铁矿-菱铁矿阶段(Ⅰ)、重晶石-磁铁矿阶段(Ⅱ);②热液改造期:堇青石-黄铁矿-磁铁矿阶段(Ⅲ)、石英-碳酸盐阶段(Ⅳ)、碳酸盐-硫化物-磁铁矿阶段(Ⅴ);③表生氧化期(Ⅵ)。流体包裹体显微测温结果表明,喷流沉积期Ⅰ阶段菱铁矿完全均一温度和盐度w(NaCl_(eq))峰值区间分别为230~270℃和13%~14.5%,Ⅱ阶段重晶石中流体包裹体的完全均一温度和盐度w(NaCl_(eq))峰值区间分别为220~290℃和9%~13%;热液改造期Ⅳ阶段菱铁矿和石英中气液两相包裹体均一温度峰值区间为240~300℃,盐度w(NaCl_(eq))为2.6%~15.7%;热液改造期Ⅴ阶段菱铁矿与石英中流体包裹体,除大量气液两相包裹体外,还发育有含子矿物多相包裹体,其中,气液两相包裹体均一温度峰值区间为290~340℃,盐度w(NaCl_(eq))为5.1%~13.4%,含子矿物多相包裹体均一温度峰值区间为380~440℃,盐度w(NaCl_(eq))为40.6%~59.7%。含子晶流体包裹体可能是流体不混溶或/和高盐度流体加入的反映。矿区内不同产状碳酸盐矿物的C、O同位素组成比较均一,δ~(13)C_(PDB)值集中在-3.58‰~-1.15‰之间,δ~(18)O_(SMOW)值为21.22‰~21.82‰,均表现出海相碳酸盐或海底喷流热液溶解海相碳酸盐的特征。大西沟矿床的地质、矿化和流体特征与海底热液喷流沉积型矿床一致,可能属于典型的喷流沉积型菱铁矿床,但后期受到秦岭造山作用的影响及热液叠加改造并形成磁铁矿和少量硫化物。大西沟菱铁矿矿床与邻近的银洞子铅锌矿组成一个较完整的喷流沉积成矿系统,两者可能分别代表了喷流沉积的边缘相和中心相。  相似文献   
2.
采用同步辐射光源和金刚石对顶砧(DAC)技术,对天然菱铁矿的压缩性和电子结构进行了原位X射线衍射(XRD)和X射线吸收近边结构谱(XANES)测试研究。在室温下随着压力逐渐升高至50.2 GPa,菱铁矿保持方解石型结构不变,但是逐渐向Na Cl型结构转变;刚性[CO3]2-基团平行于ab-平面定向排列使c轴的压缩性大于a轴。菱铁矿在44.6~47.1 GPa之间发生电子由高自旋态(HS)向低自旋态(LS)的转变,表现为体积塌陷8%。HS菱铁矿的等温状态方程参数为K0=112(5)GPa和K'0=4.6(3)。首次采用XANES技术对菱铁矿中Fe2+的电子结构进行了研究,结果表明:随着压力升高至37.3 GPa,Fe2+的配位和局域对称并未发生明显变化;此后电子结构开始转变,Fe2+的3d轨道分裂能降低,电子跃迁概率增大,呈现LS特性。  相似文献   
3.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   
4.
蓟县中元古界下马岭组地层中菱铁矿的发现及其意义   总被引:1,自引:0,他引:1  
蓟县剖面中元古界下马岭组地层下部黑色岩系中发现丰富的铁质结核,经X射线粉晶衍射、显微镜下观察、能谱分析等方法鉴定,确定铁质结核主要由菱铁矿构成.这些菱铁矿可能具有经济意义.另外,野外和室内研究表明,无论是铁质结核还是黑色岩系本身,都匮乏硫化物.这一发现说明中元古代下马岭期的燕辽海盆水体贫氧、富铁、贫硫,不是硫化的海洋.  相似文献   
5.
We study the mineralogical changes suffered by specimens of natural miocene red and green continental sandstones (from Pozuelos Formation and Tiomayo Formation) cropping out in the Argentine Puna that increase their bulk magnetic susceptibility and change color when thermally treated. We hypothesize that on heating siderite, which is present in small quantities as cement in the studied sandstones, would oxidize and decompose into maghemite and/or magnetite. Subsequent heating to higher temperatures sometimes would bring about the conversion of maghemite and/or magnetite to hematite. Mössbauer spectroscopy proved to be a very valuable tool for the determination of the presence of siderite in small amounts in the studied samples. The present results show that further work is needed in order to fully understand the mineralogical changes suffered by continental sandstones during heating. The characterization of such changes occurred during laboratory routines is relevant, since they can help to better understand natural processes.  相似文献   
6.
A shale split in the well-studied Foord Seam (Upper Carboniferous), Stellarton Basin, Nova Scotia, provides a rare opportunity to study little known siderite concretions with anatomically preserved plants from a limnic basin. Siderite concretions occur throughout the split, commonly as sheet-like, inter-connected lepidodendrid logs, or less frequently as spherical masses; they are typically vuggy. A sample of 14 stratigraphically oriented concretions in the split shows that primary siderite varies from 45% to 80% (wt.%) due to selective replacement by 5% to 40% ferroan dolomite or ankerite in plant tissues. These two minerals show large Mg/Fe and Mg/Ca variability and are Fezoned. Clay content ranges from trace to 20%, and quartz from 5% to 10%. Partial cell-wall destruction by erosion and changeable oxic/anoxic conditions, prior to siderite permineralization, resulted in preservation mainly of the more resistant plant tissues. On average, carbon from siderite is isotopically heavier (+4.8±1.9 0/00) than that from ‘dolomite' (−7.2±1.1 0/00). The distribution of and the positive correlation between δ13C and δ18O probably reflects the two fractionation processes associated with methanogenesis and ‘dolomitization', respectively, in the genetic history of the siderite concretions in the split. Siderite concretions formed diagenetically early from bicarbonate under reducing conditions in a slightly alkaline freshwater environment that precluded calcite deposition.  相似文献   
7.
文章主要介绍太湖地区富铁质棍状结核体的原始直立产状、分布特征、外形特征,内部胶体结构及其矿物学组合特征,进而讨论棍状结核体的成因模式。棍状结核体横向上广泛分布于太湖及其周边地区,产于一层标志性泥质层中;纵向上,棍状结核体在不同高度,从湖底到山边的田地,山麓下的沟槽里都有发现。原始层位可见新鲜棍状结核体,外表颜色为钢灰色,断面灰色。扰动层位的棍状体多为表面磨损的短柱状,表面风化后出现灰褐色或黄褐色。棍状结核体原始产状为直立插于标志性泥质层中,头部向下,尾部向上;头部多为具有发散螺纹的半圆球。棍状结核体可细分为短柱状和长棍状。其中,短柱状直径0.5~1 cm,长度10 cm以内;长棍状直径1~2 cm,长度15~80 cm。太湖地区棍状结核体多含外壳,厚0.1~0.2 cm。棍状结核体表面多具螺旋纹,螺旋纹上多粘有细小球粒结核。棍状结核体内部包裹大量棱角分明、磨圆度差、分选差的石英晶屑,及少量岩屑及粉尘,主要胶结物为微米级自形程度高的菱铁矿晶体。结核内部局部区域包含大量小球粒集合体,小球粒是由菱铁矿微晶加少量晶屑组成。棍状结核体较密实,孔隙度小于20%。棍状结核体的原始直立产状说明其不是下伏硬黄土层的淘洗物,不会老于标志性泥质层的年龄(7 ka B.P.)。两种成因模式可以解释棍状结核体的成因,其一是水底淤泥中的胶体结核沉积生长成因模式;其二是空爆气柱中的合成与回落成因模式,结核体在气柱中合成,自空中落下,插入已有的泥质层或与泥质层一起落下。空爆气柱回落物的假说可以合理解释棍状菱铁矿结核体的产状及分布特征,也可解释其独特的外形和内部特征。  相似文献   
8.
Fe (III) reduction is a key component of the global iron cycle, and an important control on carbon mineralization. However, little is known about the relative roles and rates of microbial (biotic) iron reduction, which utilizes organic matter, versus abiotic iron reduction, which occurs without carbon mineralization. This paper reports on the capacity for salt marsh sediments, which typically are rich in iron, to support abiotic reduction of mineral Fe (III) driven by oxidation of sulphide. Sediment was reacted with amorphous FeS under strictly anaerobic conditions at a range of temperatures in biotic and abiotic microcosm experiments. Fe (III) reduction driven by sulphide oxidation occurs abiotically at all temperatures, leading to Fe (II) and elemental sulphur production in all abiotic experiments. In biotic experiments elemental sulphur is also the oxidized sulphur product but higher bicarbonate production leads to FeCO3 precipitation. Abiotic reduction of Fe (III) occurs at rates that are significant compared with microbial Fe (III) reduction in salt marsh sediments. The solid phases produced by coupled abiotic and biotic reactions, namely elemental sulphur and FeCO3, are comparable to those seen in nature at Warham, Norfolk, UK. Furthermore, the rates of these processes measured in the microcosm experiments are sufficient to generate siderite concretions on the rapid time scales observed in the field. This work highlights the importance of abiotic Fe (III) reduction alongside heterotrophic reduction, which has implications for iron cycling and carbon mineralization in modern and ancient sediments.  相似文献   
9.
Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but Fe_2O_3 and Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The K_2O content of glauconite is low or absent, indicating its short formation time.  相似文献   
10.
Iron‐bearing concretions are valuable records of oxidation states of subsurface waters, but the first concretions to form can be altered drastically during later diagenetic events. Distinctive concretions composed of heavy rinds of iron oxide that surround iron‐poor, mud‐rich cores are common along bases of fluvial cross‐bed sets of the Cretaceous Dakota Formation, Nebraska, USA. Concretion rinds thicken inward and cores contain 46 to 89% void space. Millimetre‐scale spherosiderites are abundant in palaeosols that developed in floodplain facies. Evolution of rinded concretions began when intraformational clasts were eroded from sideritic soils, transported, abraded and deposited in river channels. Alteration of siderite and formation of rinds occurred much later, perhaps in the Quaternary when sandstone pore waters became oxic. Dakota concretions are analogous to ‘rattlestones’ in Pleistocene fluvial channels of The Netherlands, and their rinded structure is analogous to that of iron‐rich concretions in the aeolian Navajo Sandstone of Utah. In all three deposits, rinded concretions formed when pre‐existing, siderite‐cemented concretions were oxidized within a sand matrix. Unlike fluvial examples, siderite in the Navajo Sandstone was autochthonous and of late diagenetic origin, having precipitated from carbon dioxide and methane‐enriched waters moving through folded and jointed strata. Iron‐rich rinds formed in all these strata because concretion interiors remained anaerobic, even as oxygen accumulated in the pore waters of their surrounding, permeable matrix. Iron oxide first precipitated at redox boundaries at concretion perimeters and formed an inward‐thickening rind. Acid generated by the oxidation reaction drove siderite dissolution to completion, creating the iron‐poor core. Iron‐oxide rinds are indicators of the former presence of siderite, a mineral that forms only under reducing conditions, during either early or late diagenesis. Siderite is vulnerable to complete oxidation upon exposure, so the distinctive rinded concretions are valuable clues that aid in deciphering diagenetic histories and for recognizing methanic floodplain palaeoenvironments and wet palaeoclimate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号