首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   16篇
  国内免费   34篇
大气科学   14篇
地球物理   20篇
地质学   123篇
海洋学   13篇
综合类   3篇
自然地理   6篇
  2024年   1篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   11篇
  2007年   7篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   12篇
  1997年   14篇
  1996年   8篇
  1995年   10篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有179条查询结果,搜索用时 437 毫秒
1.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   
2.
Experimental phase equilibrium and trace element partitioningdata are reported for H2O-saturated mid-ocean ridge basalt at2·5 GPa, 750–900°C and oxygen fugacities atthe nickel–nickel oxide buffer. Garnet, omphacite andrutile are present at all temperatures. Amphibole and epidotedisappear as residual phases above 800°C; allanite appearsabove 750°C. The Na–Al-rich silicate glass presentin all run products is likely to have quenched from a supercriticalliquid. Trace element analyses of glasses demonstrate the importantcontrol exerted by residual minerals on liquid chemistry. Inaddition to garnet, which controls heavy rare earth elements(HREE) and Sc, and rutile, which controls Ti, Nb and Ta, allanitebuffers the light REE (LREE; La–Sm) contents of liquidsto relatively low levels and preferentially holds back Th relativeto U. In agreement with previous experimental and metamorphicstudies we propose that residual allanite plays a key role inselectively retaining trace elements in the slab during subduction.Experimental data and analyses of allanite-bearing volcanicrocks are used to derive a model for allanite solubility inliquids as a function of pressure, temperature, anhydrous liquidcomposition and LREE content. The large temperature dependenceof allanite solubility is very similar to that previously determinedfor monazite. Our model, fitted to 48 datapoints, retrievesLREE solubility (in ppm) to within a factor of 1· 40over a pressure range of 0–4 GPa, temperature range of700–1200°C and for liquids with anhydrous SiO2 contentsof 50–84 wt %. This uncertainty in LREE content is equivalentto a temperature uncertainty of only ± 27°C at 1000K, indicating the potential of allanite as a geothermometer.Silicic liquids from either basaltic or sedimentary protolithswill be saturated in allanite except for Ca-poor protolithsor at very high temperatures. For conventional subduction geothermsthe low solubility of LREE (+ Th) in liquids raises questionsabout the mechanism of LREE + Th transport from slab to wedge.It is suggested either that, locally, temperatures experiencedby the slab are high enough to eliminate allanite in the residueor that substantial volumes of H2O-rich fluids must pass throughthe mantle wedge prior to melting. The solubility of accessoryphases in fluids derived from subducted rocks can provide importantconstraints on subduction zone thermal structure. KEY WORDS: subduction; experimental petrology; allanite; solubility; supercritical liquid; eclogite  相似文献   
3.
Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea oftransport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory.Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/Magnesium in the mining of salt deposits in Qarhan Salt Lake.  相似文献   
4.
Firstly,the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory.The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented,which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake.And secondly,with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference,a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile,the model was applied to model potassium/magnesium transport in Qarban Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarban Salt Lake.  相似文献   
5.
Accumulation and distribution of heavy metals and phosphorus in sediments impact water quality. There has been an increasing concern regarding fish health in the St. Lucie Estuary, which is related to increased inputs of nutrients and metals in recent decades. To investigate vertical changes of contaminants (P, Cd, Cr, Co, Cu, Ni, Pb, Zn, and Mn) in sediments of the St. Lucie Estuary in South Florida, 117 layer samples from six of the 210 to 420 cm depth cores were analyzed for their total and water-soluble P and heavy metals, clay, total Fe, Al, K, Ca, Mg, Na, and pH. Principal component analysis (PCA) was used in two sets of analytical data (total and water-soluble contaminant concentrations) to document changes of contaminants in each core of sediments. The PCA of total contaminants and minerals resulted in two factors (principal components). The first and second factors accounted for 61.7 and 17.2 % of the total variation in all variables, and contrast indicators associated with contaminants of P, Cd, Co, Cr, Ni, Pb, Zn, and Mn and accumulation of Fe and Al oxides, respectively. The first factor could be used for overall assessment of P and heavy metal contamination, and was higher in the upper 45–90 cm than the lower depths of each core. The concentrations of P and heavy metals in the surface layers of sediments significantly increased, as compared with those in the sediments deeper than 45–90 cm. The PCA of water-soluble contaminants developed two factors. The second factor (Cu–P) was higher in the upper than the lower depths of the sediment, whereas the highest score of the first factor (Cd–Co–Cr–Ni–Pb–Zn–Mn) occurred below 100 cm. The water-soluble Cu and P concentrations were mainly dependent on their total concentrations in the sediments, whereas the water-soluble Cd, Co, Cr, Ni, Pb, Zn, and Mn concentrations were mainly controlled by pH.  相似文献   
6.
Mercury accumulation in the food chain, as a consequence of gold recovery in Brazil, has been an issue of concern. Reactions of Hg in the environment are quite complex, and can involve various Hg chemical species. Laboratory experiments were carried out on Hg0 solubility, Hg complexation and sorption on river sediments from a gold mining region in Brazil. The reactivity and the mobility of Hg species were considered. Results indicate that methyl mercury is more mobile than ionic mercury, and that the presence of humic acid enhances drastically the solubility of Hg0. The soluble complex formed has a relatively lower interaction at the sediment/water interface and is more prone to spread through the aquatic environment.  相似文献   
7.
热液中二氧化硅与成矿元素锡络合作用的实验标定   总被引:2,自引:0,他引:2  
热液中二氧化硅与成矿元素锡络合作用的实验标定*樊文苓陈紫新王声远田弋夫(中国科学院矿床地球化学开放研究实验室,贵阳550002)关键词锡石溶解度二氧化硅的络合作用迁移形式前人对锡在流体中迁移形式的实验研究和热力学计算表明,锡(Ⅱ)的多种氯络合物是高温...  相似文献   
8.
The Solubility of Sulphur in Hydrous Rhyolitic Melts   总被引:1,自引:1,他引:1  
Experiments performed at 2 kbar, in the temperature range 800–1000°C,with fO2 between NNO–2·3 and NNO+2·9 (whereNNO is the nickel–nickel oxide buffer), and varying amountsof sulphur added to hydrous metaluminous rhyolite bulk compositions,were used to constrain the solubility of sulphur in rhyolitemelts. The results show that fS2 exerts a dominant control onthe sulphur solubility in hydrous silicate melts and that, dependingon fO2, a rhyolitic melt can reach sulphur contents close to1000 ppm at high fS2. At fO2 below NNO+1, the addition of ironto a sulphur-bearing rhyolite magma produces massive crystallizationof pyrrhotite and does not enhance the sulphur solubility ofthe melt. For a given fO2, the melt-sulphur-content increaseswith fS2. For fixed fO2 and fS2, temperature exerts a positivecontrol on sulphur solubilities, at least for fO2 below NNO+1.The mole fraction of dissolved sulphur exhibits essentiallylinear dependence on fH2S at low fO2 and, although the experimentalevidence is less clear, on fSO2 at high fO2. The minimum insulphur solubility corresponds to the redox range where bothfH2S and fSO2 are approximately equal. A thermodynamic modelof sulphur solubility in hydrous rhyolite melts is derived assumingthat total dissolved sulphur results from the additive effectsof H2S and SO2 dissolution reactions. The model reproduces wellthe minimum of sulphur solubility at around NNO+1, in additionto the variation of the sulphide to sulphate ratio with fO2.A simple empirical model of sulphur solubility in rhyoliticmelts is derived, and shows good correspondence between modeland observations for high-silica rhyolites. KEY WORDS: sulphur; solubility; rhyolite; thermodynamics; fO2; fS2  相似文献   
9.
The argon solubility of 38 liquids in the system Na2O-CaO-MgO-Al2O3-SiO2 (NCMAS) has been determined at 1873 K and 1 bar, the argon concentration of presaturated glasses being measured using a static mass spectrometer. For compositions in the subsystem diopside (CaMgSi2O6), nepheline (NaAlSiO4), albite (NaAlSi3O8), anorthite (CaAl2Si2O8), argon solubility is generally a linear function of the relative proportion of each end member, solubility being lowest in diopside melt (1.53 10−5 cm3 STP · g−1 · bar−1) and highest in albite melt (2.88 10−4 cm3 STP · g−1 · bar−1). For the tectosilicate joins studied (SiO2-Na2Al2O4, SiO2-CaAl2O4, SiO2-MgAl2O4) solubility decreases with decreasing silica content in all cases, being highest for Na-bearing liquids and lowest for Mg-bearing liquids at constant molar silica content. Where comparison is possible our results are in good agreement with data from the literature. When our data are considered in isolation we find that argon solubility shows an excellent correlation with calculated ionic porosity. The covariation of argon solubility and liquid density is also reasonable, that with molar volume less convincing and that with polymerization state (as defined by the ratio of the number of nonbridging oxygens and tetrahedral network forming cations; NBO/T) nonexistent. However, when our data are combined with those from the literature no well constrained correlation between argon solubility and ionic porosity is apparent. Based upon this observation and consideration of the temperature dependence of noble gas solubility it is concluded that ionic porosity is not a universally applicable parameter which may be used to predict noble gas solubility as a function of composition, temperature and pressure. Two new models for calculating argon solubility are proposed, both employing the notion of partial molar argon solubilities. The first uses oxide components, for which partial molar argon solubility is directly proportional to partial molar ionic porosity calculated at 1873 K, irrespective of the temperature of experimental equilibration. The second model, which offers the best fit to the available data, employs tetrahedral units rather than oxides as the proposed melt components. This latter model successfully accounts for reported argon solubilities in simple Al-free systems, in simple Al-bearing systems and in natural liquids. This is interpreted to infer that argon is incorporated in large sites in the liquid structure (such as the space within rings of n-tetrahedra) although further work is required to understand the quantitative links between melt structure and noble gas solubility.  相似文献   
10.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号