首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  国内免费   66篇
  完全免费   11篇
  地质学   162篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   9篇
  2014年   13篇
  2013年   14篇
  2012年   14篇
  2011年   6篇
  2010年   5篇
  2009年   22篇
  2008年   6篇
  2007年   14篇
  2006年   10篇
  2005年   2篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有162条查询结果,搜索用时 62 毫秒
1.
S.  M.  D.   《Gondwana Research》2007,11(1-2):7
The Western Pacific Triangular Zone (WPTZ) is the frontier of a future supercontinent to be formed at 250 Ma after present. The WPTZ is characterized by double-sided subduction zones to the east and south, and is a region dominated by extensive refrigeration and water supply into the mantle wedge since at least 200 Ma. Long stagnant slabs extending over 1200 km are present in the mid-Mantle Boundary Layer (MBL, 410–660 km) under the WPTZ, whereas on the Core–Mantle Boundary (CMB, 2700–2900 km depth), there is a thick high-V anomaly, presumably representing a slab graveyard. To explain the D″ layer cold anomaly, catastrophic collapse of once stagnant slabs in MBL is necessary, which could have occurred at 30–20 Ma, acting as a trigger to open a series of back-arc basins, hot regions, small ocean basins, and presumably formation of a series of microplates in both ocean and continent. These events were the result of replacement of upper mantle by hotter and more fertile materials from the lower mantle.The thermal structure of the solid Earth was estimated by the phase diagrams of Mid Oceanic Ridge Basalt (MORB) and pyrolite combined with seismic discontinuity planes at 410–660 km, thickness of the D″ layers, and distribution of the ultra-low velocity zone (ULVZ). The result clearly shows the presence of two major superplumes and one downwelling. Thermal structure of the Earth seems to be controlled by the subduction history back to 180 Ma, except in the D″ layer. The thermal structure of the D″ layer seems to be controlled by older slab-graveyards, as expected by paleogeographic reconstructions for Laurasia, Gondwana and Rodinia back to 700 Ma.Comparison of mantle tomography between the Pacific superplume and underneath the WPTZ suggests the transformation of a cold slab graveyard to a large-scale mantle upwelling with time. The Pacific superplume was born from the coldest CMB underneath the 1.0–0.75 Ga supercontinent Rodinia where huge amounts of cold slabs had accumulated through collision-amalgamation of more than 12 continents. A high velocity P-wave anomaly on a whole-mantle scale shows stagnant slabs restricted to the MBL of circum-Pacific and Tethyan regions. The high velocity zones can be clearly identified within the Pacific domain, suggesting the presence of slab graveyards formed at geological periods much older than the breakup of Rodinia. We speculate that the predominant subduction occurred through the formation period of Gondwana, presumably very active during 600 to 540 Ma period, and again from 400 to 300 Ma during the formation of the northern half of Pangea (Laurasia). We correlate the three dominant slab graveyards with three major orogenies in earth history, with the emerging picture suggesting that the present-day Pacific superplume is located at the center of the Rodinian slab graveyard.We speculate the mechanism of superplume formation through a comparison of the thermal structure of the mantle combined with seismic tomography under the Western Pacific Triangular Zone (WPTZ), Laurasia (Asia), Gondwana (Africa), and Rodinia (Pacific). The coldest mantle formed by extensive subduction to generate a supercontinent, changes with time of the order of several hundreds of million years to the hottest mantle underneath the supercontinent. The Pacific superplume is tightly defined by a steep velocity gradient on the margin, particularly well documented by S-wave velocity. The outermost region of the superplume is characterized by the Rodinia slab graveyard forming a donut-shape. We develop a petrologic model for the Pacific superplume and show how larger plumes are generated at shallower depths in the mantle. We link the mechanism of formation of the superplume to the presence of the mineral post-perovskite, the phase transformation of which to perovskite is exothermic, and thus aids in transporting core heat to mantle, and finally to planetary space by plumes.We summarize the characteristics of tectonic processes operating at the CMB to propose the existence of an “anti-crust” generated through “anti-plate tectonics” at the bottom of the mantle. The chemistry of the anti-crust markedly contrasts with that of the continental crust overlying the mantle. Both the crust and the anti-crust must have increased in volume through geologic time, in close relation with the geochemical reservoirs of the Earth. The process of formation of a new superplume closely accompanies the process of development of anti-crust at the bottom of mantle, through the production of dense melt from the partial melting of recycled MORB, observed now as the ULVZ. When CMB temperature is recovered to near 4000 K through phase transformation, the recycled MORB is partially melted imparting chemical buoyancy of the andesitic residual solid which rises up from CMB, leaving behind the dense melt to sink to CMB and thus increase the mass of anti-crust. These small-scale plumes develop to a large-scale superplume through collision and amalgamation with time. When all recycled MORBs are consumed, it is the time of demise of superplume. Immediately above the CMB, anti-plate tectonics operates to develop anti-crust through the horizontal movement of accumulated slab and their partial melting. Thus, we speculate that another continent, or even a supercontinent, has developed through geologic time at the bottom of the mantle.We also evaluate the heating vs. cooling models in relation to mantle dynamics. Rising plumes control not only the rifting of supercontinents and continents, but also the Atlantic stage as seen by anchored ridge by hotspots in the last 200 Ma in the Atlantic. Therefore, we propose that the major driving force for the mantle dynamics is the heat supplied from the high-T core, and not the slab pull force by cooling. The best analogy for this is the atmospheric circulation driven by the energy from Sun.  相似文献
2.
南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录   总被引:9,自引:9,他引:13  
通过苏鲁超高压变质地体南部不同类型超高压变质岩石的原岩重塑.揭示超高压变质岩的原岩形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动陆缘拉伸构造环境。中国大陆科学钻探主孔中不同类型超高压变质岩石的锆石SHRIMP U-Pb定年表明。花岗质片麻岩原岩年龄为780~680Ma;榴辉岩、石榴角闪岩的原岩年龄为765~730Ma,副片麻岩中包含了730Ma、680Ma、621Ma和较年轻的继承性碎屑锆石和结晶锆石年龄。结合前人的研究成果表明,苏鲁超高压变质地体南部正片麻岩类和榴辉岩的原岩所代表的花岗岩浆和基性岩浆活动为罗迪尼亚超大陆形成后的新元古代裂解事件的产物.而副片麻岩的原岩为新元古代.古生代时期形成的扬子被动陆缘的沉积-火山表壳盖层,它们与结晶基底一起在240~220Ma期间经历了超高压变质作用。  相似文献
3.
华北克拉通元古代的三次伸展事件   总被引:8,自引:8,他引:20  
邵济安  张履桥 《岩石学报》2002,18(2):152-160
本文根据作者在山西、河北一带获得的三组元古代年龄数据,即基性岩墙群1.855Ga的Rb-Sr等时线年龄;太古代地层大面积钾质交代的^40Ar-^39Ar坪年龄1.262Ga和^49Ar-^39Ar等时线年龄1.274Ga;以及基性岩墙群0.731-0.601Ga的K-Ar稀释法年龄。结合前人研究资料,作者认为华北克拉通存在1.8-1.7Ga,1.3-1.2Ga,和0.8-0.7Ga三次伸展事件,它们之间相隔0.5GA。最后一次伸展事件可以延续到晚元古代末。文章最后提出了华北克拉通这三次事件与全球超大陆裂解事件是否响应和如何响应的问题。  相似文献
4.
The mechanisms of formation and disruption of supercontinents have been topics of debate. Based on the Y-shaped topology, we identify two major types of subduction zones on the globe: the Circum-Pacific subduction zone and the Tethyan subduction zone. We propose that the process of formation of supercontinents is controlled by super downwelling that develops through double-sided subduction zones as seen in the present day western Pacific, and also as endorsed by both geologic history and P-wave whole mantle tomography. The super-downwelling swallows all material like a black hole in the outer space, pulling together continents into a tight assembly. The fate of supercontinents is dictated by superplumes (super-upwelling) which break apart the continental assemblies. We evaluate the configuration of major supercontinents through Earth history and propose the tectonic framework leading to the future supercontinent Amasia 250 million years from present, with the present day Western Pacific region as its frontier. We propose that the tectosphere which functions as the buoyant keel of continental crust plays a crucial role in the supercontinental cycle, including continental fragmentation, dispersion and amalgamation. The continental crust is generally very thin, only about one tenth of the thickness of the tectosphere. If the rigidity and buoyancy is derived from the tectosphere, with the granitic upper crust playing only a negligible role, then supercontinent cycle may reflect the dispersion and amalgamation of the tectosphere. Therefore, supercontinent cycle may correspond to super-tectosphere cycle.  相似文献
5.
陕西小秦岭地区太华群的锆石U-Pb年龄和 Hf同位素组成   总被引:7,自引:7,他引:2  
本文对陕西华山岩体南侧一个太华群黑云斜长片麻岩进行了地球化学、锆石U-Pb年龄和Hf同位素分析.地球化学分析显示其原岩为中酸性钙碱性花岗质岩石,稀土含量较低( ∑REE =83.13×10-6),但富集Pb和LILE元素(如Rb、Ba).锆石的176Hf/177Hf比值变化于0.281258~0.281404,具明显负的εHf(t)值(-6.86~- 11.23).锆石的Hf同位素模式年龄(2.96 ~3.24Ga)表明原岩是由中太古代地壳演化而来.对比显示小秦岭太华群黑云斜长片麻岩与鲁山地区的太华群具有相似的中太古代地壳源区,但它们的形成时代可能不同.锆石内部结构、Th/U比值以及定年结果显示小秦岭地区的太华群在~1.91Ga经历了一期重要的变质热事件,该事件与Columbia超大陆拼合时的全球性碰撞造山事件相关联.小秦岭太华群为华北克拉通块体南缘的地质单元,但各地区太华群在原岩组成、形成时代和变质时代上具有不同的特征,太华群应是一个杂岩体,至少可以解体为新太古代和古元古代两部分.  相似文献
6.
位于喜马拉雅造山带东构造结,印度-雅鲁藏布江缝合带以南的南迦巴瓦岩群经历了高压变质作用和强烈的部分熔融与混合岩化作用.本文选择广泛分布的长英质片麻岩进行了岩石学和年代学研究.除个别岩石保存了由石榴石 蓝晶石 三元长石 石英组成的高压泥质麻粒岩相变质矿物组合以外,大多数片麻岩具有角闪岩相变质矿物组合,它们的原岩包括闪长岩和花岗闪长岩,并具有岩浆弧花岗岩的化学成分特征.片麻岩中的锆石普遍具有核-边结构.SARIMP和LA-ICP-MS原位分析表明,锆石的边缘给出了古生代至新生代的多期变质和岩浆事件年龄(500~10Ma),而锆石的核部给出了前寒武纪年龄,但主要集中在~2500Ma,~1800Ma,~1600Ma和~1000Ma.所分析的锆石区域具有明显的岩浆结晶环带和高的Th/U比值,表明它们所指示的是多期岩浆活动事件年代.这些年代峰值与整个高喜马拉雅结晶杂岩及印度陆块所获得的前寒武纪构造热事件年龄及分布特征基本上可以对比.因此,我们认为南迦巴瓦岩群及高喜马拉雅结晶杂岩的原岩是由新太古代至新元古代形成的多期岩浆岩组成,并作为印度陆块的一部分经历了Columbia、Rodinia和Gondwana超大陆的形成与裂解过程,以及喜马拉雅期的区域变质与岩浆作用再造.  相似文献
7.
梵净山区格林威尔期造山带与Rodinia超大陆   总被引:6,自引:6,他引:7  
王砚耕 《贵州地质》2001,18(4):211-216
贵州梵净山区有保存完好、发育齐全的中元古代的地质记录 ,是扬子陆块晚前寒武地质研究的理想场所和重要窗口。现有地质和同位素年代学等资料表明 ,该区存在格林威尔期造山带 ,其形成时间为ca 10 0 0Ma±。它同原始江南造山带一起成为华南Rodinia超大陆的组成部分 ;对其进行探讨 ,必将促进我国Rodinia超大陆聚合、裂解及其演化的研究 ,并具有重大的科学意义。  相似文献
8.
中国与蒙古之地质   总被引:6,自引:6,他引:22  
按照构造单元和构造阶段讨论中国和蒙古的演化史。中国前寒武纪地壳演化可分3大阶段:陆核的聚结(2·8Ga);原地台在吕梁运动中固结和侧向增生(1·8Ga);地台在晋宁运动中固化拼合成华夏超大陆(830Ma)。晋宁运动后,中国和蒙古以离散大陆和洋盆并存为特征,至早古生代末聚合为中国和北蒙古两个古大陆。晚古生代时,斋桑—南蒙古—兴安和乌拉尔—天山两大海域陆续消减,形成了海西期的主缝合带。中国蒙古各地块大致于印支运动末期(210Ma)重新聚合,成为劳亚超大陆,即二叠纪—三叠纪泛大陆北支的一部分。印支期后大阶段的特征是泛大陆裂解和大西洋扩张导致了环太平洋域的出现,这一新的构造型式使中国由南北部之间的差异转变为东西部之间的差异。中国东部,也包含蒙古在内,在中—新生代基本上处于张性构造状态,发育张裂盆地和大陆内部火山活动;而在中国西部,中—新生代的构造发展过程则表现为亲冈瓦纳诸地块陆续向北增生拼贴到古亚洲大陆之上。这个过程最终导致了青藏高原在中新世至第四纪的迅速上隆。  相似文献
9.
In a comprehensive U–Pb electron microprobe study of zircon and monazite from the khondalite belt of Trivandrum Block in southern Kerala, we present age data on five key metapelite locations (Nedumpara, Oottukuzhi, Kulappara, Poolanthara and Paranthal). The rocks here, characterized by the assemblage of garnet–sillimanite–spinel–cordierite–biotite–K–feldsapr–plagiocalse–quartz–graphite, have been subjected to granulite facies metamorphism under extreme thermal conditions as indicated by the stability of spinel + quartz and the presence of mesoperthites that equilibrated at ultrahigh-temperature (ca. 1000 °C) conditions. The oldest spot age of 3534 Ma comes from the core of a detrital zircon at Nedumpara and is by far the oldest age reported from this supracrustal belt. Regression of age data from several spot analyses in single zircons shows “isochrons” ranging from 3193 ± 72 to 2148 ± 94 Ma, indicating heterogeneous population of zircons derived from multiple provenance. However, majority of zircons from the various localities shows Neoproterozoic apparent ages with sharply defined peaks in individual localities, ranging between 644–746 Ma. The youngest zircon age of 483 Ma was obtained from the outermost rim of a grain that incorporates a relict core displaying ages in the range of 2061–2543 Ma.The cores of monazites also show apparent older ages of Palaeo-Mesoproterozoic range, which are mantled by late Neoproterozoic/Cambrian rims. The oldest monazite core has an apparent age of 2057 Ma. Extensive growth of new monazite during latest Neoproterozoic to Cambrian–Ordovician times is also displayed by grain cores with apparent ages up to 622 Ma. The homogeneous core of a sub-rounded monazite grain yielded a maximum age of 569 Ma, markedly younger than the 610 Ma age reported in a previous study from homogenous and rounded zircon core from a metapelite in Trivandrum Block. These younger ages from abraded grains that have undergone fluvial transport are interpreted to indicate that deposition within the khondalite belt was as young as, or later than, this range. Probability density plots indicate that majority of the monazite grain population belong to Late Proterozoic/Cambrian age (ca. 560–520 Ma) with major peaks defining sharp spikes in individual localities.The age data presented in this study indicate that the metasediments of the Trivandrum Block sourced from Archaean and Paleo-Mesoproterozoic crustal fragments that were probably assembled in older supercontinents like Ur and Columbia. The largest age population of zircons belong to the Neoproterozoic, and are obviously related to orogenies during the pre-assembly phase of Gondwana, possibly from terrains belonging to the East African Orogen. Several prominent age spikes within the broad late Neoproterozoic–Cambrian age range displayed by monazites denote the dynamic conditions and extreme thermal perturbations attending the birth of Gondwana. Our study further establishes the coherent link between India and Madagascar within the East Gondwana ensemble prior to the final assembly of the Gondwana supercontinent.  相似文献
10.
洪大卫  王涛  童英  王晓霞 《地学前缘》2003,10(3):231-256
近年来的研究证实 ,华北地台和大别—苏鲁造山带的中生代花岗岩与同时代的镁铁质超镁铁质岩有类似的Sr、Nd同位素特点 ,许多花岗岩和火山岩还具有类似埃达克岩的地球化学性质。在此基础上 ,根据现已积累的大量Sr、Nd同位素资料 ,从整个华北地台岩石圈的角度论证了中生代岩石圈地幔富集的性质、富集地幔发生的时代及其形成机制 ,进而探讨了岩浆活动的动力学机制 ,指出本区岩石圈富集地幔的形成是在Pangea超大陆裂解时岩石圈大规模拆沉减薄 ,被拆沉的太古宙古老地壳重循环进入地幔改变了地幔成分所致 ,说明超大陆裂解、岩石圈大规模拆沉减薄和富集地幔形成之间有密切的成因联系 ,超大陆裂解伴随着大陆地壳生长和消亡 (重循环 )的大体平衡。结合全球地震层析资料 ,进一步探讨了由俯冲大洋残片转化的下地壳同古老克拉通地壳物质在花岗岩源区中的重要意义。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号