首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   21篇
  国内免费   43篇
地球物理   27篇
地质学   130篇
天文学   1篇
自然地理   7篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1954年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
1.
We investigated the tectonothermal history of the Lesser Himalayan sediments (LHS), which are tectonically overlain by the Higher Himalayan Crystalline. Fission‐track dating and the track length measurement of detrital zircons obtained from the Kuncha nappe and the Lesser Himalayan autochthonous sediments in western central Nepal revealed northward cooling of the nappe and possible downward heating of the autochthon by the overlying hot nappe. Nine zircon fission‐track (ZFT) ages of the nappe showed northward‐younging linear distribution from 11.6 Ma in the front at Tamghas, 6 Ma in the central at Naudanda, and 1.6 Ma in the northernmost point at Tatopani. Thermochronological invert calculation of the ZFT length elucidated that the Kuncha nappe gradually cooled down (30 °C/Myr) at the front and rapidly cooled down (120 °C/Myr) at the root zone. In contrast, the ZFT age of the Chappani Formation, located just beneath the Kuncha nappe in the central part, demonstrated a totally reset age of 6.8 Ma, whereas the Virkot Formation, structurally far from the nappe, yielded a partially reset age of 457.3 Ma. This suggests that the LHS underwent downward heating, resulting in a thermal print on the upper part of the LHS; however, the thermal effect was not sufficient to anneal ZFT totally in the deeper part. Presently, the nappe cover is eroded and denuded from this area. Detrital zircons from the Chappani Formation in Tansen area to the south of the Bari Gad Fault did not show any evidence of annealing, suggesting that nappe never covered the LHS distributed to the south of the fault.  相似文献   
2.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   
3.
青海祁漫塔格虎头崖多金属矿区岩体热年代学研究   总被引:2,自引:0,他引:2  
虎头崖铜铅锌多金属矿床是青海祁漫塔格地区典型的与印支期岩浆侵入活动有关的接触交代矿床,矿区内出露多个不同时代的含碳酸盐地层,金属成矿元素组合复杂,中酸性侵入岩产状多变、岩性多样,成矿岩体及其成矿能力的判别一直制约着该矿区及区域的找矿勘查工作。本文基于详细的野外地质调查,开展了岩体热年代学和岩石地球化学研究。利用LA-MC-ICP-MS锆石U-Pb法,获得二长花岗岩体的年龄为230.3±3.7 Ma(n=13,MSWD=1.4);利用40 Ar-39 Ar法,获得二长花岗岩中黑云母和斜长石矿物的坪年龄分别为229.6±2.3 Ma和219.3±1.8Ma,厘定成岩时代为印支期。对二长花岗岩中不同矿物的岩体冷速率计算结果表明,虎头崖矿区二长花岗岩冷速率相对较快,其热效应较大,具有较大的成矿潜力。二长花岗岩为高钾钙碱性系列岩石,源于古老地壳物质的深熔或重熔,并可能有幔源物质的加入。  相似文献   
4.
To provide better access to thermochronological data and understand the long‐term denudation history of the Japanese Islands, we compiled a low‐temperature thermochronological dataset of fission‐track (FT) and (U–Th–Sm)/He (He) ages for apatite and zircon in bedrocks. These thermochronometric ages are compiled from 90 literature sources and 1,096 localities, and include 418 apatite FT ages, 851 zircon FT ages, 42 apatite He ages, and 30 zircon He ages. Many FT ages have been reported previously; however, the number of He ages is limited in the Japanese Islands. The compiled data are spatially biased; for instance, more data are reported for the Chubu and Kinki districts and the Pacific coast of the Shikoku Island, whereas less data were available for the Tohoku and Chugoku districts. For better understanding arc‐scale uplift‐denudation history, further thermochronological research in the lesser‐studied regions and more He thermochronometric measurements are desired. This compilation will be updated and provided on the website of the Fission‐Track Research Group in Japan ( http://ftrgj.org/index.html ).  相似文献   
5.
This study is concerned with the tectono‐thermal history of the Kathmandu nappe and the underlying Lesser Himalayan sediments (LHS) that are distributed in eastern Nepal. We carried out zircon fission‐track(ZFT) dating and obtained 16 ZFT ages from the eastern extension of the Kathmandu nappe, the Higher Himalayan Crystalline, Kuncha nappe, and the Main Central Thrust (MCT) zone. The ZFT ages of the frontal part of the Kathmandu nappe range from 13.0 ±0.8 Ma to 10.7 ±0.7 Ma and exhibit a northward‐younging tendency. These Middle Miocene ZFT ages indicate that the frontal part of the Kathmandu nappe remained at a temperature above 240 °C until the termination of its southward emplacement at 12–11 Ma. The ZFT ages of the LHS range from 11.1 ±0.9 Ma in the southern part of the Okhaldhunga Window to 2.4 ±0.3 Ma of the augen gneiss in the northern margin and also exhibit a northward‐younging age distribution. The ZFT ages show the northward‐younging linear distribution pattern (?0.16 Ma/km) along the across‐strikesection from the frontal part of the Kathmandu nappe to the root zone, without a significant age gap. This distribution pattern indicates that the Kathmandu nappe, the underlying MCT zone, and the Kuncha nappe cooled from the frontal zone to the root zone as a thermally united geologic body at a temperature below 240 °C. An older ZFT age (456.3 ±24.3 Ma), which was partially reset at the axial part of the Midland anticlinorium in the central part of the Okhaldhunga Window, was explained by downward heating from the “hot” Kathmandu nappe. The above evidence supported a model that southward emplacement of the hot Kathmandu nappe resulted in a thermal imprint on the upper part of the LHS; however, the lower part did not reach 240 °C.  相似文献   
6.
The in situ (U-Th-Sm)/He and U/Pb laser-ablation double-dating procedure is a valuable method that can provide a large dataset relatively efficiently in contrast with conventional bulk helium thermochronometry. In this study, we evaluate the potential age error associated with the double ablation procedure and report the in situ (U-Th-Sm)/He double-ablation dating of 249 zircons from the Fish Canyon Tuff locality. With LA-ICP-MS pseudo-depth profiling and 3D numerical modelling, we show that the concentric double-ablation procedure in minerals with U-Th-Sm zoning can generate a significant (U-Th-Sm)/He age error (positive or negative), resulting in over-scattering and/or an offset of the mean age. Pseudo-depth profiling is insufficient to predict the individual age error, partly because of the superimposed ablations. To evaluate the consequence of this inherent bias, we confront a synthetic age distribution to the error expected for U-Th-Sm zoned zircons analysed with double-ablation (U-Th-Sm)/He thermochronometry. As expected, a strong age bias causes the spreading of peak ages, downgrading the original signal. Yet, the throughput of the ablation-based method can allow intra- and inter-sample peak age identification and comparison, and the coupling of (U-Th-Sm)/He and U/Pb ages extends our ability to deconvolute a multimodal age spectrum.  相似文献   
7.
Increased erosion rates during the last 2 Myr of Earth history are commonly associated with widespread glaciation and global cooling. However, whether erosion rates actually increased during that period of time remains debated. This is in part because the respective role of fluvial and glacial erosion is difficult to assess, and because many existing techniques used to estimate erosion rates may be affected by averaging biases that may produce increased erosion rates towards the present. Here, we apply thermoluminescence thermochronometry to granitic bedrock samples of the southern-central Chilean Andes, a region which experienced a full transition from glacial-humid to fluvial-dry conditions during the Quaternary. Inverse modelling of the thermochronological data enables us to extract unbiased time series of erosion rates during the last ∼100 kyr. We find that erosion rates were systematically higher during around the last glacial maximum than at present, with differences exceeding an order of magnitude. Our findings indicate that glacial erosion is probably more efficient than fluvial erosion and imply that erosion has remained transient during the Quaternary.  相似文献   
8.
Abstract The Port aux Basques gneisses comprise three lithostratigraphic units separated by major fault zones: the Grand Bay Complex; the Port aux Basques Complex; and the Harbor le Cou Group. A similar regionally developed polyphase history of penetrative deformation characterizes each of these units. Thickening during D1 produced rare recumbent folds (F1) and an axial planar schistosity (S1), overprinted by D2 recumbent folds (F2), and transposed during development of a locally penetrative, differentiated crenulation cleavage (S2). In western sectors of the area, D2 was associated with NW-directed reverse shearing. The NE-trending structural grain reflects D3 transpression, partitioned into dextral transcurrent movement along major shear zones and development of upright-to-steeply inclined, periclinal folds (F3) and a variably penetrative schistosity (S3). Amphibolite facies metamorphism increases in grade from west to east across the area. Microstructures, including porphyroblast-matrix foliation relations and internal textural unconformities in garnet, indicate episodic porphyroblast nucleation and growth, which reflect a prograde traverse sequentially across univariant reactions during syntectonic metamorphism. Garnet, kyanite and staurolite porphyroblasts are wrapped by the S2 foliation, but each may contain trails of inclusions that define S1; commonly these trails preserve early stages of S2 crenulation cleavage development. Progressive and sequential reaction out of kyanite, staurolite and muscovite in favour of sillimanite, garnet, biotite and K-feldspar, and the development of an increasing volume of anatectic migmatite in south-eastern sectors of the area record syn- to late-D2 peak metamorphic conditions. Microstructural relationships and petrogenetic grid considerations indicate clockwise trajectories in P-T space for units of the Port aux Basques gneisses. Peak metamorphic conditions are estimated to have been 620–650° C at ≤8kbar in the west and 700–750° C at ≤8 kbar in the east. Titanite from an upper amphibolite facies calc-silicate gneiss yields U-Pb ages of c. 420 Ma, interpreted to date cooling shortly after the thermal peak in these gneisses. Variable D3 strain was associated with some recrystallization of hornblende and micas. 40Ar/39Ar hornblende plateau isotope correlation ages range from c. 419 to c. 393 Ma, from east to west across the area, and are interpreted to record cooling through c. 500° C coeval with or soon after D3 deformation. The range in ages may record the effects of heterogeneous D3 deformation and differential uplift from south-east to north-west associated with displacement on major shear zones. 40Ar/39Ar muscovite plateau ages cluster at c. 390 Ma, and date cooling through c. 375° C during regional exhumation. Cooling rates are moderate to fast and may indicate a component of tectonic exhumation. The Port aux Basques gneisses are a product of Silurian collisional tectonics. The higher grade of metamorphism in comparison with adjacent areas of the Canadian Appalachians is interpreted to reflect greater thickening due to juxtaposition of the St Lawrence promontory (Laurentian margin) with the Cabot promontory (Avalonian margin) during closure of the Iapetus Ocean.  相似文献   
9.
王先美 《地质学报》2008,82(1):1258-1273
鲁西隆起区发育有大量的北西向脆性断裂。依据野外断裂构造的几何学、运动学详细解析认为,北西向断裂系经历了早期的右行压剪、右行张剪,以及后期的左行压剪等不同性质的构造活动。由与北西向断裂活动相伴生的同期侵入岩体的 K-Ar测试结果分析,北西向断裂系在距今约160 Ma及距今130~110 Ma分别经历了右行压剪与右行张剪构造活动;通过分布在隆起区不同样品的磷灰石裂变径迹数据分析、冷却史反演,厘定鲁西地体在距今90~80 Ma存在一次区域性快速冷却构造事件,该构造事件与北西向断裂系的左行压剪构造活动相对应。  相似文献   
10.
《Basin Research》2018,30(5):835-862
We used detrital zircon U/Pb geochronology and apatite (U–Th–Sm)/He thermochronology to better constrain depositional ages and sedimentation rates for the Pliocene Productive Series in Azerbaijan. U/Pb analysis of 1,379 detrital zircon grains and (U–Th–Sm)/He analysis of 57 apatite grains—from Kirmaky Valley and Yasamal Valley onshore sections, Absheron Peninsula—yielded two distinct sub‐populations: “young” Neogene grains and “old” Mesozoic, Palaeozoic and Proterozoic/Archean grains. The large numbers of Neogene age grains (around 10% of all grain ages) provided a new absolute age constraint on the maximum depositional age of the Lower Productive Series of 4.0 Myr. These “young” Neogene zircon grains most likely originated from volcanic ash falls sourced from the Lesser Caucasus or Talesh Mountains. In this paper we propose a timescale scenario using the maximum depositional age of the Productive Series from detrital zircon grain U/Pb constraints. Potential consequences and limitations of using apatite (U–Th–Sm)/He dating method in estimating maximum depositional ages are also discussed. These new age constraints for the Lower Productive Series gave much faster sedimentation rates than previously estimated: 1.3 km/Myr in the South Caspian Basin margin outcrops and up to 3.9 km/Myr in the basin centre. The sedimentation rates are one of the highest in comparison to other sedimentary basins and coeval to global increase in sedimentation rates 2–4 Myr. The older group of detrital zircon grains constitutes the majority of grains in all sample sets (~80%). These older ages are inferred to reflect the provenance of the Productive Series sediment. This sediment is interpreted to have been derived from the Proterozoic and Archean crystalline basement rocks and Phanerozoic cover of the East European Craton, Proterozoic/Palaeozoic rocks of the Ural Mountains and Mesozoic sedimentary rocks of the Greater Caucasus. This sediment was likely supplied from northerly sourced drainage that emptied into the South Caspian Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号