首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   10篇
  国内免费   12篇
地球物理   5篇
地质学   60篇
天文学   1篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   4篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
排序方式: 共有67条查询结果,搜索用时 93 毫秒
1.
研究目的】陆地热泉钙华作为火山、地热区常见的陆相碳酸盐岩沉积物/岩被广泛用于恢复古环境,但其中可反映古气候信息的代用指标多受复杂外界条件变化控制,因此利用热泉钙华进行古气候信息提取有待深入研究。【研究方法】本文对当前热泉钙华在重建古气候信息方面的成功案例进行了总结,并梳理了与热泉钙华沉积相关的各类气候、非气候影响因素。【研究结果】研究认为针对热泉钙华进行古气候恢复代用指标的选取,目前较为可行的有C-O同位素、主微量元素,孢粉学数据由于孢粉保存的局限性,可作为佐证信息,配合其他气候代用指标来检验古气候意义的正确与否,同时需将热泉钙华中各项气候代用指标与生物地层学、冰芯、石笋等相对成熟的古气候研究手段进行对比,使各类古气候替代指标相互验证,从而更好的解读热泉钙华中古气候信息。【结论】利用热泉钙华中的各项气候代用指标进行可靠的古气候信息提取与恢复具有可行性。创新点:本文梳理了国内外热泉钙华恢复古气候的成功案例,并探讨了针对热泉钙华进行古气候恢复研究存在的问题。  相似文献   
2.
温泉钙华沉积的影响因素   总被引:2,自引:2,他引:0  
钙华是在泉水、河水、湖水、洞穴周围沉积的非海相碳酸钙沉积物。钙华是陆地水循环过程中物质迁移的一种表现形式,研究钙华的形成有助于了解局部水文循环中的物质迁移规律并间接了解古气候与古水文地质条件。部分温泉的泉口附近沉积有形态多样的钙华。本文综述温泉钙华的形成过程、钙华沉积的主要影响因素和它们之间的相互影响关系。水化学条件是钙华沉积的物质基础和必要条件,水动力条件是钙华沉积的充分条件,生物效应对钙华沉积起到加强的作用,沉积环境通过影响水化学条件或水动力条件间接控制钙华的沉积。  相似文献   
3.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   
4.
5.
A sloping travertine mound, approximately 85 m across and a few metres thick is actively forming from cool temperature waters issuing out of Crystal Geyser, east‐central Utah, USA. Older travertine deposits exist at the site, the waters having used the Little Grand Wash Fault system as conduits. In contrast, the present Crystal Geyser travertine mound forms from 18°C waters which have been erupting for the last 80 years from an abandoned oil well. The present Crystal Geyser travertine accumulation forms from a ‘man‐made’ cool temperature geyser system; nevertheless, the constituents are an analogue for ancient geyser‐fed carbonate deposits. The travertine primary fabric is composed of couplets of highly porous, thin micritic laminae intercalated with thicker iron oxide rich laminae. Low Mg‐calcite is the dominant mineralogy; however, aragonite is a major constituent in deposits proximal to the vent and decreases in abundance distally. Cements exhibit a variety of fabrics, isopachous being common. Constituents include micro‐stromatolites, clasts, pisoids and the common occurrence of Frutexites‐like iron oxide precipitates. Leptothrix, a common iron‐oxidizing bacterium, is believed to be responsible for the production of the dense iron‐rich laminae. Pisoids litter the ground around the vent and rapidly decrease distally in abundance and size.  相似文献   
6.
R. Drysdale  S. Lucas  K. Carthew 《水文研究》2003,17(17):3421-3441
At‐a‐station diurnal variations in carbonate hydrochemistry were measured during four observation periods at Davys Creek, a tufa‐depositing stream in central NSW, Australia. Major ion concentrations and continuously logged measurements of specific conductivity, pH and temperature showed that changes in the amount of CaCO3 deposited upstream of the study reach were directly related to changes in diurnal water temperatures, which control the rate of CO2 efflux to the atmosphere. The greatest upstream losses occurred during the mid‐afternoon water temperature peak, whereas the lowest upstream losses occurred at sunrise, when water temperatures were at their lowest. Cloudy days at all times of the year produced small diurnal water temperatures ranges (c. 2–5°C) and, consequently, relatively small changes in upstream CaCO3 loss (23–50 mg L?1) through the day. Clear sunny days, especially during summer months, produced large diurnal water temperature changes (up to c. 11°C), which in turn triggered diurnal changes in upstream CaCO3 loss of up to 100 mg L?1. By implication, the active reach of tufa deposition must advance downstream and increase in length during the evening and vice versa during the day. Given that the temperature of Davys Creek waters are a function of insolation, changes in the reach of tufa deposition under baseflow conditions are a direct function of the prevailing weather. This has implications for the palaeoclimatic interpretation of fossil tufa deposits. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
Groundwaters feeding travertine‐depositing rivers of the northeastern segment of the Barkly karst (NW Queensland, Australia) are of comparable chemical composition, allowing a detailed investigation of how the rate of downstream chemical evolution varies from river to river. The discharge, pH, temperature, conductivity and major‐ion concentrations of five rivers were determined by standard field and laboratory techniques. The results show that each river experiences similar patterns of downstream chemical evolution, with CO2 outgassing driving the waters to high levels of calcite supersaturation, which in turn leads to widespread calcium carbonate deposition. However, the rate at which the waters evolve, measured as the loss of CaCO3 per kilometre, varies from river to river, and depends primarily upon discharge at the time of sampling and stream gradient. For example, Louie Creek (Q = 0·11 m3 s?1) and Carl Creek (Q = 0·50 m3 s?1) have identical stream gradients, but the loss of CaCO3 per kilometre for Louie Creek is twice that of Carl Creek. The Gregory River (Q = 3·07 m3 s?1), O'Shanassy River (Q = 0·57 m3 s?1) and Lawn Hill Creek (Q = 0·72 m3 s?1) have very similar gradients, but the rate of hydrochemical evolution of the Gregory River is significantly less than either of the other two systems. The results have major implications for travertine deposition: the stream reach required for waters to evolve to critical levels of calcite supersaturation will, all others things being equal, increase with increasing discharge, and the length of reach over which travertine is deposited will also increase with increasing discharge. This implies that fossil travertine deposits preserved well downstream of modern deposition limits are likely to have been formed under higher discharge regimes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
8.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   
9.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   
10.
云南白水台钙华水池中水化学日变化及其生物控制的发现   总被引:11,自引:0,他引:11  
为弄清云南白水台泉及其下游钙华水池中水化学的日变化,选取1号泉及其流经的两个钙华水池(6号和10号)作为研究对象并对其水温、pH值和电导率进行了自动监测。根据Ca2 、HCO3-与电导率存在的线性关系,用WATSPAC软件计算了水中方解石的饱和指数和PCO2。监测发现:泉水不存在显著的水化学日动态变化,而两个钙华水池表现出显著的日动态变化。其中10号钙华水池在白天温度较高时水中的CO2大量逸出并通过水下水生植物的光合作用加速了水中碳酸钙的沉积。6号钙华水池水生植物生长茂盛,其叶片和部分枝干露出水面,因而光合作用主要发生在空中,所以此处水化学表现为白天pH值降低和电导率升高的反常现象,即由温度主导的根呼吸作用,在白天释放更多的CO2进入水体而使沉积下来的碳酸钙重新溶解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号