首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  国内免费   6篇
大气科学   1篇
地球物理   2篇
海洋学   11篇
  2022年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
基于Argo资料的热带西太平洋上层热含量初步研究   总被引:2,自引:0,他引:2  
根据2004年1月-2008年12月间的Argo剖面浮标观测资料,分析了热带西太平洋上层热含量的空间分布及其季节变化特征,并考察了不同计算深度以及盐度对热含量的影响,且探讨了有关计算上层热含量的深度选取问题.结果表明:(1)热带西太平洋上层热含量的气候态大致呈“马鞍型”分布,即在12°N以北和5°S以南海域上层热含量都较高,而在2°-12°N之间热含量则较低,特别在棉兰老冷涡区热含量很低;(2)研究海域的上层热含量一年四季均呈这种两高一低的空间分布形势,但强度的季节性变幅却较大,整个研究海域的热含量体现为春季最高,夏季最低,秋冬季居中的特点,但两个高热含量区和低热含量带的热含量各呈现出不同的季节变化;(3)温跃层深度的波动对海洋上层热含量的影响要大于上混合层,尤其在南北纬10°以外海域.因此,计算西太平洋上层热含量时,应将积分深度取为温跃层下界深度,才有可能比较真实地反映该海域的上层热含量的分布和变化,若为简单起见,取等深度计算时,以700m为宜,此外,盐度对上层热含量的影响也应引起重视.  相似文献   
2.
热带西太平洋海域上层海洋热含量的CSEOF分析   总被引:4,自引:0,他引:4  
基于月平均Argo温、盐度剖面、纬向风和Ni o3.4指数等资料,利用循环平稳经验正交函数(CSEOF)分解法、最大熵谱分析和相关分析等方法,研究了热带西太平洋海域上层(0—700m)海洋热含量的时空变化特征,并探讨了其年际变化的可能原因。结果表明,热带西太平洋海域上层海洋热含量距平场具有显著的东-西向反位相振荡,且这种振荡除了具有较明显的季节变化外,还存在着较强的准2a振荡。此外,热含量距平场还存在着负-正-负的三极式经向模态,该模态除了具有明显的季节变化外,还存在着显著的准4a振荡。进一步分析表明,热含量的准2a振荡与ENSO事件的发生有着非常密切的联系,并对赤道西太平洋纬向风异常有1—2月的滞后响应。  相似文献   
3.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   
4.
基于2017版全球海洋Argo网格数据集(BOA-Argo),利用最大角度法和梯度比值法等客观分析方法计算了2004年1月—2016年12月期间,西太平洋海域(25°S~40°N,120°~180°E)的上混合层和温跃层上、下界深度,并计算了混合层温盐度以及温跃层强度等海洋环境参数,制作完成水平分辨率为1°×1°的月平均Argo数据衍生产品。将本数据产品和采用阈值法计算得到MILA GPV数据集做比较,结果显示:对于混合层的主要空间分布特征和时间序列变化特征,两者都十分吻合;将西太平洋海域温跃层上、下界深度和强度等参数与人们利用传统的温度梯度法计算结果相比较,其季节分布特征及变化趋势也大体相符。  相似文献   
5.
基于2001年1月~2014年7月期间的Argo温盐剖面资料,利用循环平稳经验正交函数(CSEOF)分解、最大熵谱分析和相关分析等方法,研究了西太平洋暖池海域上层海洋热盐含量的空间分布、季节和年际变化特征,并探讨了其影响机制。结果表明,暖池海域近表层与次表层热含量逐年变化呈反位相变化模态,同样盐含量变化趋势也不尽相同。无论热含量还是盐含量,都存在着明显的季节和年际变化。CSEOF分析表明,暖池海域热含量第一模态空间场具有显著的东—西反相位年际振荡,盐含量第一模态则呈正-负-正的三极子模态,但时间序列显示,热含量在2007年以后经过3次位相调整,而盐含量2007年以后只经过一次位相调整,且这种年际变化都与ENSO事件有关,且热含量相比于盐含量受ENSO影响更大。El Niño期间,暖池海域西部热含量减少, 东部增加,La Niña期间则相反;研究海域南北部盐含量在El Niño期间增加,中部(暖池高温中心)减少,La Niña期间则相反;进一步分析表明,热含量变化主要受到局地风场以及纬向流的影响,而盐含量变化则受淡水通量和纬向流的影响。  相似文献   
6.
海洋科学的发展离不开精确的数据,然而各种海洋观测仪器在复杂的海洋环境中作业难免产生测量误差,导致观测数据需要进行实时(或延时)质量控制。中国Argo计划在搭载多个航次布放剖面浮标的同时,对航次中获取的船载CTD(conductivity, temperature, and depth)仪观测资料、自动剖面浮标观测资料以及实验室高精度盐度计测量数据进行了实时比对。分析结果显示,利用实验室高精度盐度计对现场观测数据尤其是船载CTD仪观测资料进行质量控制,于温盐数据(特别是深层)的实时/延时校正非常重要;如某航次未经标定的船载CTD仪所测1000dbar以深范围内海水盐度,与实验室高精度盐度计的差值达到±0.1左右,远远落后于国内海洋调查规范对盐度准确度±0.02的一级测量要求,该具体实例更加突显了船载CTD仪在航次前后送往权威部门进行检测的必要性和重要性,从而确保每个航次获取的CTD资料的质量。建议有条件的情况下,在进行深海大洋船载CTD仪观测时要进行现场实验室高精度盐度计的质量控制工作及比对试验,以提高我国深海大洋观测数据的质量。  相似文献   
7.
海洋观测数据的质量控制是建立高质量海洋科学数据库的基础,对于推动海洋及多学科交叉研究、预测预报、灾害预警等具有重要意义.随着各种自动化观测平台(仪器)的出现,海洋调查从近海逐渐拓展到开放大洋,海洋科学已进入大数据时代.目前,国内外对如何获得高质量的现场观测数据越来越重视.然而,由于获取数据手段多样、数据质量千差万别、数据错情类型繁多等因素,使得如何高效和精准地发现这些质量问题并对其进行质量控制是一个难点,也是数据处理中的核心技术.本文系统总结了海洋观测数据(温度、盐度、溶解氧等)质量控制的研究现状与最新进展,对比了国内外不同机构质量控制的差异,分析了现已取得的成果及存在的问题,探讨了开展质量控制性能评估的可能性,并就未来的发展方向提出了一些建议.  相似文献   
8.
基于2004年1月至2010年12月期间的网格化Argo剖面资料,分析了西太平洋暖池的三维结构以及暖池体积的变化特征,并探讨了进出暖池的经、纬向流量变化及暖池暖水可能的维持机制.结果表明,西太平洋暖池最深可达120m,且由表层向下,面积逐渐缩小并向南倾斜(到100m,主体几乎全部位于赤道以南).依水团结构计算,暖池体积约为1.86×10^15m^3.暖池体积的年变化呈明显的双峰结构,最大值分别出现在6月和10月;暖池体积的年际变化与ENSO事件相联系,其在ENSO年具有非常明显的体积变异.从多年平均的角度分析,纬向上进入暖池的暖水流量约52Sv,主要集中在暖池上层,且以东边界流入为主,而流出暖水约49Sv,主要集中在暖池中下层,且以西边界损耗为主.经向上流进暖池的暖水约28Sv,主要以南、北边界的上层为主,而从南、北边界流出暖池的暖水(总量约23Sv)在数值和各层次上不相上下.暖水进出暖池的季节和年际变化特征显示,暖池在纬向上以暖水损耗为主,而经向上则以获取暖水为主.暖池体积与进出暖池的暖水净流量在季节时间尺度上存在较强的相关性,不过二者在年际尺度上相关系数较低.然而,在年际时间尺度上,暖池在经向上的暖平流受到ENSO事件的影响要强于纬向,在2007年和2010年两次强LaNina事件中,经向各边界进出暖池的暖水净流量异于正常年份,从而影响暖池暖水的供应,使得暖池体积在ENSO事件中发生变异.虽然绝对地转流在赤道上是不成立的,而暖池的上层又是跨赤道的,但我们的分析结果仍然可以帮助人们对于西太平洋暖池暖水的流入和流出情况获得一定的认知.  相似文献   
9.
中国Argo计划:Argo观测和资料应用进展   总被引:2,自引:0,他引:2  
文章回顾了中国Argo计划已经取得的成果,主要包括中国Argo观测网的建设、浮标技术、数据质量控制及共享等。同时,讨论了Argo数据产品的开发以及数据在海洋、气象和大气研究中的应用,特别是在热带气旋(台风)、海洋环流、中尺度涡、湍流、海水热盐储量与输送、大洋水团,以及海洋、天气/气候业务化预测预报中的应用。最后,文章阐述了中国Argo海洋观测网长期维护和持续发展所面临的挑战和机遇,我们应在印度洋增加浮标数量,同时建立南海Argo区域海洋观测网,促进Argo资料在东南亚和印度洋沿岸国家的应用。  相似文献   
10.
利用Argo剖面浮标分析上层海洋对台风“布拉万”的响应   总被引:9,自引:2,他引:7  
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号