首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  海洋学   2篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
台风轨迹的准确预测对于减少台风灾害及风险评估意义重大。本文提出了一种基于双注意力机制的台风轨迹预测模型(Dual-Attention-Encoder-Decoder),首先根据台风轨迹数据计算台风轨迹的变化曲率,将台风曲率序列与台风轨迹序列一同作为预测模型的特征输入,充分考虑了台风轨迹中隐藏的转向、偏折信息;然后构建双注意力机制增强的编码器-解码器网络(Encoder-Decoder)作为预测模型,利用特征注意力机制和时间注意力机制分别对模型输入和隐藏状态进行权重分配,能够学习输入特征和预测目标之间的关系,并且有效解决编码器-解码器结构对过长序列预测的性能下降问题,编码器和解码器均采用LSTM网络,能够存储长时间依赖并且收敛性好,不易发生梯度消失或爆炸;最后,本文使用1949—2017年中国气象局提供的西北太平洋台风最佳路径数据集,将DA-Encoder-Decoder模型与BP、SVR、LSTM、ELM等模型进行对比,分别对24 h、48 h、72 h台风轨迹进行预测。结果表明:DA-Encoder-Decoder模型的均方根误差和实际误差距离指标均优于其他四种预测方法,验证了本文方法的有效性。  相似文献
2.
海洋锋是重要的中尺度海洋现象,具有数据量小、目标小、弱边缘等特性。针对实际检测任务中弱边缘、小目标海洋锋的检测精度低、错检及漏检率高等问题,融合scSE (spatial and channel Squeeze&Excitation)空间注意力模块构建了一种改进的Mask R-CNN海洋锋检测模型。该方法首先对Mask R-CNN骨干网络结构进行改进,采用scSE模块引导的ResNet-50网络作为特征提取网络,通过加权策略对图像通道和空间位置进行特征突出,提升网络对重要特征的提取能力;其次,针对海洋锋目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,提高边界检测精度。最后,为验证方法的有效性,从训练数据和实验模型上,分别设计多组对比实验。实验结果表明,相比传统Mask R-CNN、YOLOv3神经网络及现有Mask R-CNN改进网络,本文方法对SST梯度影像数据集上的强、弱海洋锋检测效果最好,定位准确率(IoU,Intersection-over-union))及检测精度(mAP,Mean Average Precision)均达0....  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号