首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  国内免费   2篇
地质学   3篇
海洋学   9篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2017年   2篇
  2012年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
马玉贤  王玉  於凡  许宁  袁帅  史文奇 《冰川冻土》2022,44(5):1482-1491
辽东湾是我国冰情最严重海域,每年冬季都会受到海冰的显著影响,冰情预测评估可为辽东湾涉海活动提供防冰抗冰的技术依据。建立气温-水温-冰情的相关性,结合便于获取的现场高精度连续气象数据和高精度冰情预测模型,可实现局地小尺度的冰情快速预测评估。基于2017—2018年冬季辽东湾东岸红沿河附近海域实测气象-水温-冰情同步观测数据,结合辽东湾大尺度整体冰情(浮冰面积),推演局地气温、水温与不同尺度冰情评价参数(浮冰范围与冰厚)的相关关系,提出基于不同气温区间的气温变化规律的冰底热通量选取方法,进而建立适用于辽东湾的气温-水温-冰情评估方法。相关性分析结果显示:观测点气温与水温存在明显相关性;浮冰范围与气象数据存在明显相关性,临界温度为 -5 ℃的累计负气温能很好拟合本年度盛冰期浮冰范围。基于HIGHTSI进行数值模拟后发现:水温与块体积法计算冰底热通量时,冰水间的热传递系数取2.2×10-5是可行的;水温对冰情的影响表现在海冰冰厚最大值与冰期长短。为弥补辽东湾其他海域因缺少实测海水温度观测数据欠缺、冰底热通量选取不准选取导致的冰情模拟预测评估困难的问题,本文依据水温与气温的相关性,将水温随气温变化划分为结冰区(气温小于-10 ℃时水温维持冰点附近)、过渡区(气温为-10~-5 ℃时水温处于-1.4~-0.4 ℃)、融冰区(气温高于-5 ℃时水温随气温的增大逐渐增大),进而提出适用于辽东湾所有海域的冰底热通量计算方法和冰情评估方法。  相似文献   
2.
全面获取气-冰-海环境特征数据已成为当前冬季现场观测的重要任务,用于准确、快速开展区域冰情评价预测,以满足海冰防灾减灾工作需求。基于辽东湾东岸鲅鱼圈雷达海冰观测站(15 a)与温坨子附近海域(9 a)的冬季观测数据,对辽东湾东岸的风、水温、海冰时空分布等环境基本特征进行了探讨。对鲅鱼圈站1月和2月4级风(5.5 m·s-1)以上数据进行分析,发现偏北风自2016年以来呈现由N、NNE、NE向NE转变,偏南风自2016年以来主风向由SSW向WSW转变。对温坨子海冰观测站水温观测数据进行分析,发现水温表现出降温期、平稳期与回温期,降温期发生于12月至次年1月中旬,平稳期发生于1月下旬至2月中旬,回温期发生于2月下旬;当气温低于-10 ℃时,水温基本维持在-1.4 ℃附近,气温处于-10~-5 ℃时,水温基本分布于-1.4~-0.5 ℃区间,气温处于-5~5 ℃时,观测点水温基本分布于-1.4~3 ℃。对鲅鱼圈站与温坨子站能见范围内的逐日海冰分布面积比例进行分析,发现海冰面积呈现增大期、稳定期与减少期,鲅鱼圈站附近12月12日至次年1月9日前后为增大期(对应初冰期),1月9日前后至2月8日前后为稳定期(对应盛冰期),2月8日前后至3月15日前后为减少期(对应融冰期);温坨子站与鲅鱼圈站类似。对鲅鱼圈站与温坨子站附近海域海冰结冰期进行统计,给出了两个站点的平均初冰日、终冰日与结冰期,并与历史数据进行了对比。结合初冰日与终冰日的环境要素分析,对初冰与终冰的规律特征进行了总结,对气候变化背景下的辽东湾冰情评估有着重要意义。  相似文献   
3.
由于经验和技术缺失,我国冰区滨海核电站的冷源取水安全受到海冰的威胁。数值模拟预警是建立和完善核电冷源取水安全保障系的关键部分。本文以辽东湾东岸的红沿河核电站为例,介绍了 3 种主要的核电冷源安全海冰致险模式,给出了 不同致险模式的数值模拟预警流程,并对数值模拟范围的选取进行重点阐述。结果表明,满足 24 h 预警需求的海冰数值模拟范围面积在数百甚至数千平方公里以上,较大的模拟范围与高网格分辨率对运算能力提出了较高的要求,是目前该数值模拟预警需要解决的突出问题。  相似文献   
4.
北冰洋水体对格陵兰海混合增密对流的可能影响分析   总被引:2,自引:1,他引:1  
格陵兰海内发生的等密度混合后产生的增密对流是重要的对流现象之一。北冰洋正在发生快速变化,其内水团变性以及环流系统的改变都将使格陵兰海等密度混合对流发生明显变化,继而对全球气候变化产生影响。以往关于等密度混合对流的研究很少,大都集中在对流发生海域。由于等密度混合的主体是大西洋回流水与北冰洋流出水体,本文目的是探讨北极内部不同海域的水体会对混合增密对流造成的可能影响。文中定义了有效对流速度,强调水平温度梯度和垂向层化强度是影响有效对流速度的决定性因素;水平温度差越大,垂向层化越弱,产生的对流越强。发生在东格陵兰极锋处的有效对流都是大西洋的水体,一部分是在格陵兰海回流的大西洋回流水;一部分是在北冰洋潜沉并回流的北极大西洋水,该水体在北冰洋循环的时间越长,温度差越大,产生的有效对流越强。而横越北冰洋的太平洋水因密度过低而不能参与等密度混合对流,加拿大海盆主盐跃层之上的水体也都不能参与对流。北冰洋几个海盆深层水的温度差异明显,有可能与格陵兰海深层水形成有效对流;但是,由于深层水流速低、湍流混合弱、水平温度梯度小,是否可以产生有效对流尚不清楚。  相似文献   
5.
应变速率与单轴压缩强度极值的关系在抗冰结构设计与优化中占有重要地位。基于2009年冬季普兰店海域海冰在不同海冰温度(-5°C、-10°C、-15°C)下的压缩强度试验数据,给出各自应变速率—压缩强度散点图。结果表明,海冰在不同加载速率下表现为三种破坏模式,即韧性区、过渡区与脆性区;海冰温度对过渡区对应应变速率范围影响较小,均在6.3×10~(-4)~2×10~(-3)区域附近。结合三段式函数形式,给出不同温度下应变速率—压缩强度极值的曲线拟合结果。依据上述结论,在庄河海域选择应变速率10~(-2)、10~(-3)与10~(-4)进行不同海冰温度(-16°C~-4°C)下单轴压缩强度试验。结果显示:在韧性区,海冰温度与压缩强度极值呈弱负相关;在过渡区,海冰温度与压缩强度极值呈明显线性减小;在脆性区,强度极值相对海冰温度敏感度较低。基于此,在应变速率—压缩强度曲线中提出温度影响系数,这一试验分析方法可推广至其它海域。  相似文献   
6.
以2010~2015年的岸基雷达海冰监测数据为基础,简要分析了鲅鱼圈海域的冰期、冰型和冰厚等冰情基本特征。近年来的海冰监测数据表明,鲅鱼圈海域的冰期明显偏短,冰期内不同阶段的冰型变化较明显,鲅鱼圈海域部分时段海冰分布比例变化较大,这主要归因于该区域的海冰运动。针对目前岸基雷达海冰监测的技术发展现状,提出了岸基雷达海冰监测技术研发的主要问题是雷达像元回波值不稳定与海冰实测样本量匮乏。  相似文献   
7.
冷源取水安全是核电运行安全的重要部分,会受到多种海洋堵塞物的威胁。为科学支撑滨海核电站取水口堵塞物防治工作,亟须掌握取水口的精细流场。走航和定点相结合的测量方式可同时获取流场的时空变化特征,适用于滨海核电站取水口精细流场的测量;走航测量宜采用具有底跟踪功能的ADCP,该设备具有测量精度高和数据处理简便的优点,然而在使用中应注重规范性以减少测量误差;以潮流为主的海域在涨急和落急时段的流场较稳定,在这段时间内进行走航数据插值可得到涨急和落急时段的精细流场;应用该方案获取某滨海核电站取水口的精细流场,测量结果显示取水口的流场较复杂,小范围流场受取水影响显著,呈现非潮流特征。  相似文献   
8.
2015年12月在辽东湾中部西岸浅水海域进行了8个站、连续半个月的坐底ADCP海流剖面观测,通过对分层潮流和余流分析,得到该海域的海流特征如下:1)实测海流以潮流特征占主导,潮流特征为规则半日潮流,优势分潮为M2;M2椭圆长轴大小为25~50 cm/s、方向多为NE-SW向,具有显著的往复流特征。2)观测期间的平均余流为1~10 cm/s,方向多为SW向,平均余流在水平和垂向上的空间差异明显,日均余流波动剧烈;表层余流方向与局地风向具有很好的同步一致性,且距岸较近站位的表层余流受风影响更大;中、底层余流与风的相关性较差。本文得到的余流方向不支持冬季辽东湾北部的边界顺时针环流的存在。  相似文献   
9.
基于突发海洋生态灾害防范的需求,文章以渤海石油平台为例,研究海洋工程海冰灾害风险监测系统及其应用。研究表明,围绕风险监测的目标和内容确定系统构架,渤海石油平台海冰灾害风险监测系统主要包括结构运行状态监测和海冰环境要素监测2个子系统,可综合结构振动监测和冰情监测直接判别和动态监控风险等级。  相似文献   
10.
基于GPS的海冰实时监测系统及其应用研究   总被引:1,自引:1,他引:0  
海冰是高纬度海区特有的海洋现象。运动的海冰具有巨大的能量,对冰区的石油平台、港口堤坝、船只等构成了巨大的威胁,因此实时获取准确的海冰运动信息对于海冰灾害的防治有重要的现实意义。我国海冰为一年海冰,冰体较薄,用于极地的海冰跟踪设备并不适用于我国北方海域。设计并提出了一种基于GPS的海冰定位跟踪系统,系统包含冰上定位发射和接收两个部分。冰上部分质量较轻且外形增加了防滑设计,接收端接收到数据后自动入库,并与地图匹配显示。监测系统于2015-2016年冬季在辽东湾海域进行了应用测试,应用试验表明,该方法能够较好地进行海冰定位与跟踪,定位误差在5 m以内,运行时间较久,较适用于我国薄冰海域。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号