首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11393篇
  免费   2768篇
  国内免费   2954篇
测绘学   992篇
大气科学   2355篇
地球物理   3129篇
地质学   5823篇
海洋学   1718篇
天文学   411篇
综合类   1206篇
自然地理   1481篇
  2024年   17篇
  2023年   190篇
  2022年   553篇
  2021年   657篇
  2020年   484篇
  2019年   592篇
  2018年   683篇
  2017年   646篇
  2016年   702篇
  2015年   588篇
  2014年   764篇
  2013年   751篇
  2012年   824篇
  2011年   847篇
  2010年   889篇
  2009年   777篇
  2008年   763篇
  2007年   669篇
  2006年   585篇
  2005年   467篇
  2004年   389篇
  2003年   392篇
  2002年   348篇
  2001年   361篇
  2000年   340篇
  1999年   415篇
  1998年   343篇
  1997年   322篇
  1996年   262篇
  1995年   283篇
  1994年   245篇
  1993年   237篇
  1992年   164篇
  1991年   103篇
  1990年   85篇
  1989年   84篇
  1988年   80篇
  1987年   60篇
  1986年   39篇
  1985年   18篇
  1984年   16篇
  1983年   12篇
  1982年   16篇
  1981年   12篇
  1980年   14篇
  1979年   5篇
  1977年   4篇
  1976年   3篇
  1958年   8篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   
2.
基于16S rRNA高通量基因测序技术,对毛乌素沙地小叶锦鸡儿(Caragana microphylla)、柠条锦鸡儿(Caragana korshinskii)根系微域(即根系、根际土、根区土、灌丛间空白土)间的细菌群落多样性和结构差异性进行表征。本研究对各根系微域间细菌群落的Alpha多样性指数进行了单因素方差分析以及基于OTU水平的PCA分析,探究其在根系微域间Alpha和Beta多样性的层级变化,证实了有关植物根系微域生态位分化的报道,并发现锦鸡儿属植物根系微域间细菌群落的多样性和结构组成随着4个微域类型由外及内呈现出显著的层级差异性(P<0.05)。通过对优势细菌群组的结构组成分析,发现锦鸡儿属植物对特定细菌群组具有显著的向根系内筛选富集的作用(P<0.05)。这种植物通过根系微域对特定细菌群组的逐级筛选富集作用,是导致锦鸡儿属植物灌丛下不同生态位间细菌群落结构和组成发生层级变异的主要原因。  相似文献   
3.
摘要:目的 探讨菌株Salinivibrio sp.YH4分泌的丝氨酸蛋白酶EYHS的耐盐性及结构特征。方法 明胶底物酶谱法分析EYHS的耐盐性。应用生物信息学手段对EYHS及6种耐盐的S8家族丝氨酸蛋白酶结构特征进行分析。结果 EYHS在4 mol/L的NaCl溶液中仍具有活性,属于耐盐蛋白酶。EYHS及6种S8家族丝氨酸蛋白酶分子表面的loop区等无规则卷曲所占比例较高,α-螺旋与β-片层则主要位于酶分子内部。EYHS分子表面酸性氨基酸含量较高,且具有弱疏水内核。多序列比对发现蛋白酶的催化三联体两侧存在高度保守的基序和保守的极性氨基酸及芳香族氨基酸,并存在多个保守的Gly与Ala。同源模建和表面电荷分布显示,α螺旋和β片层围成了蛋白酶的催化腔,EYHS活性中心包含由Asp32、His65与Ser215组成的催化三联体,且催化位点区域表面静电势为负。结论 上述结构特征可能有助于耐盐丝氨酸蛋白酶EYHS在高盐环境下维持其稳定性和适度柔性,并有助于其催化功能的发挥,为深入研究耐盐丝氨酸蛋白酶的高盐环境适应性提供了一定的理论依据。  相似文献   
4.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
5.
Hu  Shengyong  Han  Dandan  Feng  Guorui  Zhang  Ao  Hao  Guocai  Hu  Lanqing  Zhu  Liping  Li  Bo 《Natural Resources Research》2020,29(2):1361-1373

The transfer and evolution of stress among rock blocks directly change the void ratios of crushed rock masses and affect the flow of methane in coal mine gobs. In this study, a Lagrange framework and a discrete element method, along with the soft-sphere model and EDEM numerical software, were used. The compaction processes of rock blocks with diameters of 0.6, 0.8, and 1.0 m were simulated with the degrees of compression set at 0%, 5%, 10%, 15%, 20%, and 25%. This study examines the influence of stress on void ratios of compacted crushed rock masses in coal mine gobs. The results showed that stress was mainly transmitted downward through strong force chains. As the degree of compression increased, the strong force chains extended downward, which resulted in the stress at the upper rock mass to become significantly higher than that at the lower rock mass. It was determined that under different degrees of compression, the rock mass of coal mine gobs could be divided, from the bottom to the top, into a lower insufficient compression zone (ICZ) and an upper sufficient compression zone (SCZ). From bottom to top, the void ratios in the ICZ sharply decreased and those in the SCZ slowly decreased. Void ratios in the ICZ were 1.2–1.7 times higher than those in the SCZ.

  相似文献   
6.
Cheng  Zhiheng  Liu  Biao  Zou  Quanle  Wang  Xin  Feng  Jicheng  Zhao  Zhiyan  Sun  Fulong 《Natural Resources Research》2020,29(3):1601-1615
Natural Resources Research - Mining-induced fracture plays a key role in gas drainage for gas burst-prone underground coal mines, especially for closely multilayered coal seams. The layout and...  相似文献   
7.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   
8.
Tsunamis are traveling waves which are characterized by long wavelengths and large amplitudes close to the shore. Due to the transformation of tsunamis, undular bores have been frequently observed in the coastal zone and can be viewed as a sequence of solitary waves with different wave heights and different separation distances among them. In this article, transient harbor oscillations induced by incident successive solitary waves are first investigated. The transient oscillations are simulated by a fully nonlinear Boussinesq model, FUNWAVE-TVD. The incident successive solitary waves include double solitary waves and triple solitary waves. This paper mainly focuses on the effects of different waveform parameters of the incident successive solitary waves on the relative wave energy distribution inside the harbor. These wave parameters include the incident wave height, the relative separation distance between adjacent crests, and the number of elementary solitary waves in the incident wave train. The relative separation distance between adjacent crests is defined as the ratio of the distance between adjacent crests in the incident wave train to the effective wavelength of the single solitary wave. Maximum oscillations inside the harbor excited by various incident waves are also discussed. For comparison, the transient oscillation excited by the single solitary wave is also considered. The harbor used in this paper is assumed to be long and narrow and has constant depth; the free surface movement inside the harbor is essentially one-dimensional. This study reveals that, for the given harbor and for the variation ranges of all the waveform parameters of the incident successive solitary waves studied in this paper, the larger incident wave heights and the smaller number of elementary solitary waves in the incident tsunami lead to a more uniform relative wave energy distribution inside the harbor. For the successive solitary waves, the larger relative separation distance between adjacent crests can cause more obvious fluctuations of the relative wave energy distribution over different resonant modes. When the wave height of the elementary solitary wave in the successive solitary waves equals to that of the single solitary wave and the relative separation distance between adjacent crests is equal to or greater than 0.6, the maximum oscillation inside the harbor induced by the successive solitary waves is almost identical to that excited by the single solitary wave.  相似文献   
9.
成矿预测:从二维到三维   总被引:1,自引:0,他引:1  
随着矿产资源勘探方法以及计算机科学技术的不断发展,成矿预测的理论和方法已从定性发展至定量,从二维拓展到三维。近十年来,随着深部矿产资源勘探工作的推进,三维成矿预测研究得到了迅猛发展,相关理论与方法也已逐步走向成熟。本文总结了国内外二维成矿预测研究的现状,同时对近十年来国内外学者在三维地质建模技术、三维成矿预测方法等方面的主要成果和进展做了系统总结和分析。目前,国内外多个地区已相继开展了三维成矿预测工作,并成功圈定多个深部找矿靶区,相关成果为深部找矿勘探工作提供了新的方法和方向。在此基础上,本文对未来三维成矿预测的发展趋势进行展望,相较于传统的二维成矿预测,三维成矿预测往往受限于三维预测信息的缺乏。如何更好的挖掘二维数据在深度方向的指示能力,将二维数据推演至三维环境,利用数值模拟、机器学习等方法开展数据挖掘、充分发挥已有数据的内蕴信息将在未来推动三维成矿预测理论的深入发展,提高三维成矿预测的理论方法及应用实践水平。  相似文献   
10.
Wang  Yuke  Gao  Yufeng  Li  Bing  Guo  Lin  Cai  Yuanqiang  Mahfouz  Ali H. 《Acta Geotechnica》2019,14(5):1379-1401

It is important to be fully aware of the dynamic characteristics of saturated soft clays under complex loading conditions in practice. In this paper, a series of undrained tests for soft clay consolidated with different initial major principal stress direction ξ were conducted by a hollow cylinder apparatus (HCA). The clay samples were subjected to pure principal stress rotation as the magnitudes of the mean total stress p, intermediate principal stress coefficient b, and deviator stress q were all maintained constant. The influences of intermediate principal stress coefficient and initial major principal stress direction on the variation of strain components, generation of pore water pressure, cyclic degradation and non-coaxiality were investigated. The experimental observations indicated that the strain components of specimen were affected by both intermediate principal stress coefficient and initial major principal stress direction. The generation of the pore water pressure was significantly influenced by intermediate principal stress coefficient. However, the generation of pore water pressure was merely influenced by initial major principal stress direction when b?=?0.5. It was also noted that the torsional stress–strain relationships were affected by the number of cycles, and the effect of intermediate principal stress coefficient and initial major principal stress direction on the torsional stress–strain loops were also significant. Stiffness degradation occur under pure principal stress rotation. Anisotropic behavior resulting from the process of inclined consolidation have considerable effects on the strain components and non-coaxial behavior of soft clay.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号