首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  国内免费   70篇
  完全免费   53篇
  海洋学   249篇
  2020年   3篇
  2019年   15篇
  2018年   12篇
  2017年   22篇
  2016年   16篇
  2015年   22篇
  2014年   19篇
  2013年   10篇
  2012年   20篇
  2011年   18篇
  2010年   19篇
  2009年   26篇
  2008年   24篇
  2007年   21篇
  2006年   2篇
排序方式: 共有249条查询结果,搜索用时 46 毫秒
1.
对长江口崇明东滩盐沼边缘及邻近光滩处的水深、流速和悬沙含量的潮周期变化过程进行了现场实测,并对横向悬沙通量进行了计算和分析。研究结果表明,在平静天气条件下光滩和盐沼上的流速过程有明显差异,植被缓流作用在落潮期更为显著,流速在涨潮由光滩向盐沼不断增大。与涨潮流速优势相对应,涨潮期平均悬沙含量是落潮期的1.8倍。横向悬沙通量以向岸输移为主,悬沙总通量与潮次内最大水深的四次方呈显著正相关。在平静天气条件下潮汐作用控制着盐沼前缘地带泥沙输移水平,盐沼滩面保持稳定淤积,前缘光滩淤积速率高于盐沼处的,盐沼逐渐向海延伸。在大风天气条件下潮次内的流速和悬沙含量水平提高了数倍,悬沙输移量大增,净输移仍以向岸方向为主,在盐沼上部和前缘光滩均可能在短期内发生大量淤积。  相似文献
2.
长江口北支强潮河道悬沙运动及输移机制   总被引:3,自引:3,他引:1  
随着崇明北侧岸滩的自然淤涨和人工圈围,北支河道显著束窄,"喇叭口"顶点位置下移。在新的地形及流域来水来沙变异背景下,作为长江河口的分支强潮汊道,其悬沙运动与输移特点值得探讨。根据2010年4月小潮至大潮连续8 d的半个半月潮水沙观测,结合多年不同河段水沙观测数据得到的含沙量过程曲线显示:整个河道潮流强、含沙量高,含沙量过程曲线呈 "单峰—双峰—单峰"的变化特点;河道悬沙的输移以平流输移和"潮泵输移"为主,以"喇叭口"顶点为界,上游段河道平流输移占主导地位,"潮泵输移"次之;下游段"潮泵输移"占主导,平流输移次之。净输沙总量呈:上段河道向海,下段河道向陆,在"喇叭口"顶点附近存在一个泥沙汇聚的最大浑浊带区域。  相似文献
3.
2005年3-5月,选取位于长江口崇明东滩的3个典型站点,对沉积物间隙水中营养盐剖面进行了观测;同时,通过模拟现场环境培养的方法测定了营养盐在沉积物-上覆水界面的交换通量.结果表明,间隙水中NH4+和SiO32-浓度比PO43-和NO2-+NO3-一般要高2-3个数量级.沉积物-水界面交换过程在春季表现为对NO3-和SiO32-的吸收,吸收的量在很大程度上取决于上覆水中这两种营养盐的浓度;由上覆水和表层间隙水浓度梯度所决定的分子扩散通量对实际交换通量的控制有限.对NO3-,分子扩散通量占交换通量的比例为到21%;对SiO32-,前者和后者的方向相反;对NH3+,较大的浓度梯度支持显著的释放通量,而在培养过程中并没有发现上覆水中NH4+浓度持续的增长.以上结果都说明其它因素,如浮游植物吸收、颗粒物吸附以及底栖动物扰动在更大程度上决定着崇明东滩沉积物-水界面营养盐的交换过程.  相似文献
4.
互花米草入侵对河口盐沼湿地食物网的影响   总被引:2,自引:2,他引:1  
商栩  管卫兵  张国森  张经 《海洋学报》2009,31(1):132-142
盐沼湿地因其在河口及沿岸水域生态系统中的重要地位而被普遍关注,近年来互花米草在长江口乃至整个东南沿海地区的入侵及迅速蔓延更是引起了广泛重视.由于对维系本区域湿地生态系统运转的食物网结构的了解仍很有限,从而难以准确评估互花米草入侵后对原有生态系统的影响.本研究通过基于碳、氮稳定同位素测定结果的IsoSource软件估算和聚类分析,对长江口盐沼湿地内不同初级生产者的相对营养贡献大小进行了初步评估.结果显示在该湿地食物网中,底栖微藻和本土陆源C.植物是主要的营养来源.入侵C4植物互花米草的营养贡献不显著,在本次研究中仅有堇拟沼螺这一腹足类消费者在夏季较为确定地表现出对源自互花米草的富813.C的有机质的摄取.随着互花米草的迅速扩散,其在长江口湿地的有机质产出中所占比例还将不断增加,这将可能从营养基础的层面自下而上对该食物网的结构和功能造成影响.  相似文献
5.
长江河口北槽水沙过程对航道整治工程的响应   总被引:2,自引:2,他引:1  
北槽大型航道整治工程确定了南北槽分汊口分流界线, 阻碍了北槽和邻近滩槽的水沙自由交换过程, 使北槽水沙动力过程发生调整。基于工程前后北槽主槽纵向同步水沙观测数据的统计分析表明:入口段落潮优势显著减弱;上段枯季时落潮优势显著减弱, 而洪季时落潮优势有所增强;中段(弯曲段拐点附近)落潮优势略有减弱;下段落潮优势明显加强。北槽主槽水沙纵向输移机制分析表明:欧拉余流、潮泵作用、斯托克斯效应和垂向环流为悬沙输移的主要驱动力, 其中欧拉余流输沙指向海, 斯托克斯输沙和垂向环流输沙指向陆, 而潮泵输沙随着季节而变化。洪季, 欧拉余流输沙和潮泵输沙在工程前后的变化使大潮期河床冲淤由中段和下段普遍落淤转化为中上段集中落淤。枯季, 工程前后稳定的潮流辐散输沙作用使大潮期河床以冲刷为主, 但工程后在入口段和上段潮泵的向上游输沙占优势, 使悬沙在入口段落淤。  相似文献
6.
长江河口北支倒灌盐水输送机制分析   总被引:2,自引:2,他引:4  
吴辉  朱建荣 《海洋学报》2007,29(1):17-25
基于三维数值模式ECOM-si,采用通量机制分析的方法,对长江河口北支倒灌盐水的输送机制进行了定量研究.模式计算了南北支分叉口和南支河段的潮平均单宽盐通量、各叉道上10个断面的潮平均盐通量和上述两者的机制分解项.基于计算结果讨论了北支倒灌盐水输送的动力机制,发现Lagrange余流输送和潮泵输送在倒灌盐水的输送中起主导作用.讨论了南支各叉道输送倒灌盐水的数量关系,给出了北支盐水倒灌输送的主要路径.  相似文献
7.
长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征   总被引:2,自引:2,他引:4  
根据2006年10月在崇明东滩潮间带和潮下带两个站位的大小潮水文泥沙观测资料和悬沙水样的室内粒度分析资料,对悬沙粒径的时空分布特征及其与流速等的关系进行了分析,并对再悬浮特点进行了探讨,结果表明,大小潮期间的悬沙颗粒组成较细,平均粒径的均值仅为6μm;大潮时的悬沙粒径略粗于小潮的,潮间带的略粗于潮下带的;由底床向上悬沙粒径趋于减小。悬沙粒径与流速、悬沙含量无明显的统计学关系,底质粒径、再悬浮强度和再悬浮泥沙粒径的空间变化以及浮泥的悬浮作用等是主要的影响因素。由于底质粒径的空间分布复杂,在东滩水域再悬浮具有明显的空间变化。在底质平均粒径大于60μm的粗颗粒沉积区,大小潮的再悬浮作用微小,底质以推移质运动为主。在底质平均粒径介于5~11μm的细颗粒沉积区上,悬沙级配与底质级配基本相同,该区域是再悬浮的主要发生源地;悬沙级配的变化过程揭示,再悬浮对底层悬沙的贡献率平均为8%~20%,大潮时的再悬浮强度是小潮的5~10倍,由底质再悬浮产生的悬沙在底部水层中的平均含量约为0.03~0.47 kg/m3。  相似文献
8.
盐度和腐殖酸共同作用下的长江口泥沙絮凝过程研究   总被引:2,自引:2,他引:2  
长江河口有机质含量丰富,盐度变化较大,因此研究长江河口以细颗粒泥沙为主的多因子共同作用下的絮凝有助于了解最大浑浊带的形成机制.通过实验研究盐度和腐殖酸共同作用对长江口细颗粒泥沙浊度变化影响的过程,从浊度相对变化率、絮团粒径和电位变化三方面综合分析了其絮凝机理,并且对絮凝体进行了红外和电镜分析,探讨了絮凝体的微观结构.结果表明:(1)随着盐度增大细颗粒泥沙浊度相对变化率逐渐增大,粒径增大,而电位绝对值变小;(2)随着腐殖酸浓度增大细颗粒泥沙浊度相对变化率先略有升高后迅速降低,粒径增大,电位绝对值增大;(3)微观结构的分析表明腐殖酸是以腐殖酸盐的形式包覆在泥沙表面,同时也验证了河口中C-P-OM(C代表黏土,P代表阳离子,OM代表有机化合物)的泥沙絮凝模式.  相似文献
9.
人工岛周围的波生流计算方法   总被引:2,自引:2,他引:0  
针对Hardy-Cross法的基本原理建立的一种波生流计算的数值模型在计算处理人工岛周围区域方面还存在的问题,提出了解决处理方法,并通过算例验证了该模型能够运用于人工岛等岛状非水面区域附近的波生流计算,从而消除了Hardy-Cross法实用化中的一个障碍.  相似文献
10.
长江口夏季低氧区形成及加剧的成因分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对比长江口及其邻近海域历史调查资料和目前的现场监测数据(1958-09—1959-09,2003-09,2005-07及2009-08),分析了长江口夏季低氧区的历史变化,探讨了低氧形成及其加剧的原因。结果表明:20世纪90年代之后长江口季节性低氧区出现扩大化、严重化趋势;低氧区的形成主要受控于物理过程和自然作用,包括长江冲淡水、沿岸流、上升流、台湾暖流及黑潮等各大流系及其与温度等理化因素相互作用下形成的水体层化、锋面过程、气旋式冷涡;低氧现象加剧原因复杂,影响因子有气候变化导致的海水温度上升,长江径流量、输沙量变化,长江流域降雨变化等,而富营养化的加剧对低氧加剧并非起主导作用。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号