排序方式: 共有37条查询结果,搜索用时 29 毫秒
1.
通过扫描电镜(SEM)观察,首次在红河断裂带内的花岗糜棱岩中发现类微生物状纳米颗粒。高分辨率平插能谱分析结果表明,该类微生物状纳米颗粒成分中的C元素平均含量约为10%,指示无机成因,并非某些菌类微生物,结合XRD分析结果表明该类纳米颗粒成分来自花岗糜棱岩的造岩矿物。通过对各种形貌特征的纳米颗粒观察、筛查和规律分析,探讨了类微生物状纳米颗粒的形成机理及构造意义,认为其形成过程可以分为岩石破裂形成球粒状纳米颗粒、球粒状纳米颗粒粘聚形成片状、片状纳米颗粒卷曲成管状以及管状纳米颗粒脱落聚集四个阶段,其中后三个阶段为纳米颗粒的后生构造变形阶段,指示红河断裂带构造环境的多期次变化。断裂带内球粒状纳米颗粒可能是在宏观构造应力场作用下的最小变形产物,其结构或变形特征蕴含丰富的宏观构造活动信息,是传统构造地质学研究方法之外的新思路和新手段。 相似文献
2.
利用印度气象局(India Meteorological Department,IMD)、国际气候管理最佳路径档案库(International Best Track Archive for Climate Stewardship,IBTrACS)提供的1982—2020年阿拉伯海热带气旋路径资料,美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析资料,对近39 a阿拉伯海热带气旋源地和路径特征、活跃区域、频数及气旋累积能量(accumulated cyclone energy,ACE)指数的季节特征和年际变化特征进行分析,并结合环境因素,说明其物理成因。结果表明:阿拉伯海热带气旋多发于10°~25°N,65°~75°E海域,5—6月、9—12月发生频数较高且强度较强,1—4月、7—8月发生频数较低且气旋近中心最大风速均小于35 kn;频数的季节变化主要受控于垂直风切变要素;阿拉伯海热带气旋发生频数和ACE近年有上升趋势,年际变化主要受控于海面温度(sea surface temperature,SST)和850 hPa相对湿度要素。 相似文献
3.
利用印度气象局(India Meteorological Department,IMD)、国际气候管理最佳路径档案库(International Best Track Archive for Climate Stewardship,IBTrACS)提供的1982—2020年阿拉伯海热带气旋路径资料,美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析资料,对近39 a阿拉伯海热带气旋源地和路径特征、活跃区域、频数及气旋累积能量(accumulated cyclone energy,ACE)指数的季节特征和年际变化特征进行分析,并结合环境因素,说明其物理成因。结果表明:阿拉伯海热带气旋多发于10°~25°N,65°~75°E海域,5—6月、9—12月发生频数较高且强度较强,1—4月、7—8月发生频数较低且气旋近中心最大风速均小于35 kn;频数的季节变化主要受控于垂直风切变要素;阿拉伯海热带气旋发生频数和ACE近年有上升趋势,年际变化主要受控于海面温度(sea surface temperature,SST)和850 hPa相对湿度要素。 相似文献
4.
浅海和俯冲海沟等海域,不仅是矿产和油气资源主潜力区,也是构造地震频发区,其浅表热流和深部温度信息对于了解板块俯冲和岩浆活动等过程至关重要.这些区域浅层地温场和热流场受到底水温度波动(BTV)强烈扰动,其背景热流需由长期观测来获取.在全面分析了国内外海底热流长期观测技术特点后,我们提出了系缆式海底热流长期观测方案,2013年起陆续开展了部分核心技术的预研究及一系列海底、湖底及浅孔试验.结果表明:(1)自主研制的长周期低功耗微型测温单元,在2~36℃的环境下可连续观测1年;系缆式投放与回收方案即使在地形陡峭、1.5 kn流速及无动力定位等条件下仍然可行.(2)南海北部BTV总体随水深变浅而增强,在浅水区对浅层地温场扰动不可忽略.例如,在水深2600~3200 m和850~1200 m海域分别为0.025~0.053℃(17天内)、0.182~0.417℃(2天内),而台西南盆地北坡(水深763 m)夏季的海底热流由浅表的0.69 W·m-2转变为0.83 m以深的-0.25~-0.05 W·m-2.(3)兴伊措和湖光岩玛珥湖BTV向深部传导过程中其幅度逐渐减弱、相位滞后,进而导致热流方向与强度随季节发生变化.而康定中谷浅层(7 m内)地温在不同深度处同步波动,且冬高(35~36℃)夏低(28~32℃).推测为夏季大量降雨所致;其热流浅部低(0.504 W·m-2)深部高(0.901 W·m-2),指示着鲜水河断裂带深部热流体上涌.这些预研究工作为后续系缆式海底热流长期观测系统的正式研制与应用奠定了扎实基础. 相似文献
5.
自20世纪70年代末期以来,西北太平洋的热带气旋在全球变暖的背景下主要发生了两种宏观的气候变化:一个是热带气旋生成频数呈现年代际减少,尤其是在东南部海域;另一个则是其生成与活动位置等总体特征有向西北偏移的趋势。本文对这两个方面的研究进展进行了概述。近些年的研究表明,垂直风切变的增强可能是夏秋季热带气旋频数减少的最主要原因,这与太平洋-印度洋海面温度变化导致的大尺度环境变化有密切联系。同样有研究认为北大西洋海面温度的多年代际振荡对近期西北太平洋热带气旋生成频数的减少也非常重要。但西北太平洋西部强热带气旋的频数呈现出增加的趋势,这可能与东亚近海海面温度的显著升高有关,尽管这种变化是否可信仍有争议。近20年来,西北太平洋热带气旋活动普遍出现西北移倾向,包括生成位置和路径位置,这种变化可能受到了ENSO变异及20世纪90年代末期太平洋气候突变的调控。同时,热带环流的极向扩张又导致了热带气旋的有利环境向北扩张,因此西北太平洋热带气旋活动也出现极向迁移的趋势。 相似文献
6.
INTERANNUAL VARIABILITY OF WINTER-TO-SPRING CIRCULATION TRANSITION OVER SOUTHERN CHINA AND ITS SURROUNDING AREAS AND MECHANISMS
下载免费PDF全文

The climatological features and interannual variation of winter-to-spring transition over southern China and its surrounding areas, and its possible mechanisms are examined in this study. The climatological mean winter-to-spring transition is approximately in mid-March over southern China and the northern South China Sea. During the transition stage, anomalous southwest winds prevail at low-level over southern China and its nearby regions with enhanced convergence center over southern China, bringing more moisture from the Bay of Bengal (BOB) and the South China Sea (SCS) to southern China; meanwhile, the upper level is characterized by an obvious divergence wind pattern over southern China to the southwest part of Japan and enhanced upward motion. All the change of circulation is favorable to an increase of precipitation over southern China after seasonal transition. The winter-to-spring transition is predominantly on the interannual variation over southern China and the northern SCS. Early winter-to-spring transitions may induce more precipitation over southern China in spring, especially in March, while late cases will result in less precipitation. The interannual variability of the winter-to-spring transition and the related large-scale circulation are closely associated with the decaying phase of ENSO events. The warm ENSO events contribute to early winter-to-spring transitions and more precipitation over southern China. 相似文献
7.
A.M. Gabrielov V.I. Keilis-Borok V. Pinsky O.M. Podvigina A. Shapira V.A. Zheligovsky 《Tectonophysics》2007,429(3-4):229-251
We explore the impact of fluids migrating through a fault network on the dynamics of lithosphere, both on slow movements and seismicity. For that purpose fluids in the fault zones are incorporated into modelling of blocks-and-faults systems, which takes into account driving forces and the system's geometry. Simulations have been performed for two-dimensional models: an idealised “brick wall” structure, and a coarse image of Sinai Subplate. Migrating fluids originating in different locations are considered, as well as fluids trapped in closed pockets. Basic features of the modelled and observed seismicity are in good accord, as shown by comparison with the earthquake catalog compiled by Geophysical Institute of Israel. 相似文献
8.
为助推我国碳中和目标的实现以及提升我国在海洋碳汇领域的国际话语权,文章以海洋碳汇机制为切入点,系统梳理高分辨率生物和化学检测技术及其扩展应用。研究结果表明:海洋惰性溶解有机碳库对于海洋增汇具有重要意义,这对溶解有机碳汇资源高分辨率检测技术提出新的要求;目前具有“指纹特征”的高分辨率检测技术主要包括流式细胞和功能基因芯片生物检测技术以及光谱和质谱化学检测技术,此外结合稳定碳同位素标记技术实现生物溯源和化学检测的链接,均具有重要应用前景。 相似文献
9.
陵水17-2气田位于中国南海琼东南盆地,是中国海油自营勘探发现的第一个深水高产气田,探明储量规模超千亿立方米。在水深200~1 600 m区域,采用工程调查船与自主式水下潜器调查结合的方式,进行地球物理资料采集、海底表层取样及钻探取样,并对多波束测深、后向散射强度、侧扫声呐、浅地层剖面、室内测试分析等数据进行综合分析,研究了海底表层沉积物类型、分布规律及工程地质特性。按照海底地形地貌特征,陵水17-2深水气田开发区可划分为陆架区、缓坡区和滑塌区;陆架区表层沉积物以黏土和粉质黏土为主,不同站位物理力学性质差异较大,局部夹砂层;缓坡区和滑塌区具有高含水率、低密度、高孔隙比、高液限、高可塑性、低强度等典型深水沉积特点。区域内海底泥面至泥面之下0.3 m,土质不排水抗剪强度为0~4 kPa,非常有利于海底电缆、海底管道、脐带缆的铺设。缓坡区浅层土质条件非常适合吸力式、防沉板及抓力锚施工,滑塌区浅层土质条件适合防沉板、抓力锚及打入桩基础施工。研究成果将对琼东南盆地深水油气田开发工程的设计和安装施工具有指导意义。 相似文献
10.
上层经向翻转环流(shallow meridional overturning circulation, SMOC)主导热带-副热带上层海洋水体交换,对海洋物质输运和热量交换具有重要意义。基于7套海洋再分析数据产品,本文主要探讨了印度洋SMOC的冬夏季节变化及其差异的原因。结果显示,印度洋SMOC主要由南半球副热带环流圈(southern subtropical cell, SSTC)和跨赤道环流(cross-equatorial cell, CEC)组成,并且具有显著的季节差异。夏季风期间, SSTC和CEC均为表层南向输运,表层以下北向输运的逆时针环流结构。冬季风盛行时, SSTC仍维持逆时针结构,但环流中心南移且深度加深,强度弱于夏季;然而, CEC却转向为表层北向输运,表层以下向南输运的顺时针环流结构,其环流中心位置与夏季接近,环流强度与夏季相当。这种印度洋SMOC冬夏结构差异究其原因主要由风生环流主导, CEC冬夏季节环流方向反转是北印度洋冬夏季风转向的结果,而南印度洋信风的季节性位移和强度变化是SSTC强度和位置季节差异的主要原因。 相似文献