首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   10篇
  国内免费   11篇
大气科学   27篇
地球物理   1篇
海洋学   3篇
  2023年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
排序方式: 共有31条查询结果,搜索用时 78 毫秒
1.
邢蕊  徐晶  林瀚 《气象》2020,46(4):517-527
登陆台湾后再次登陆大陆的热带气旋(TC)由于受复杂下垫面及中低纬天气系统的共同影响,过岛后在海峡内的路径、强度及结构变化复杂,导致登陆大陆的精确化定位、定强及预报难度大。分析了1949—2017年二次登陆的81个热带气旋路径及强度变化特征,并对上海台风所(CMA/STI)、美国联合台风警报中心(JTWC)及东京区域台风中心(RSMC-Tokyo)的热带气旋最佳路径数据中过岛热带气旋的定位定强进行对比分析。结果表明:二次登陆大陆热带气旋强度以减弱为主,少数热带气旋在海峡内增强;过岛后热带气旋路径多数会发生明显偏折,但三家最佳路径资料判断的偏折趋势不一致;由于热带气旋过岛时结构遭到破坏,定位定强难度增大,导致三个业务中心对其定位定强的差异较大,这种不确定性增大了其路径和强度监测预报的难度。  相似文献   
2.
利用NCEP再分析资料和常规地面观测资料,分析混合层的建立对2012年3月23日天津地区强阵风天气过程的影响机理。结果表明:强气压梯度和强变压梯度的共同动力作用是地面强阵风形成的背景条件。强阵风出现在午后气温较高、湿度较低且地面气压较低的时段。午后深厚混合层内的干热对流使高空急流北侧下沉气流将动量下传至对流层中层后向近地面层进一步有效下传,导致地面阵风增大。深厚混合层的建立也是地面强阵风形成的一个重要原因。WRF模拟结果表明,局地混合层强度差异使高空动量下传产生局地差异,这可能是天津各地区阵风强度存在空间差异的重要原因。  相似文献   
3.
利用多普勒雷达和风廓线雷达资料,辅以高分辨率的地面自动气象站资料,对2012年7月25—26日天津地区的一次大暴雨(局部特大暴雨)过程进行扰动特征分析。结果表明:1)大暴雨过程的雷达回波表现为高质心结构,气旋式辐合与对流中上升气流及后侧下沉气流紧密相连,表现出较好的对流组织性,也预示强降雨将持续发展。逆风区的维持与伸展的高度可作为暴雨预报的先兆信号。2)地面辐合线与雷达回波上对流单体出现"列车效应"的区域有很好的一致性。地面形成的气旋性闭合环流和中小尺度环流辐合作用的稳定维持是产生大暴雨的重要因素。3)由风廓线资料可详细分析出暴雨过程中低空急流及边界层急流的扰动过程。在强降雨发生前,急流强度明显增强,与雷达回波上的"列车效应"是一致的,但比雷达更早出现。风廓线资料中低空急流和边界层急流的增强态势,对大暴雨短时临近预报具有很好的指示意义。  相似文献   
4.
基于国家海洋信息中心质量控制后的西太平洋 10 度方区约 100 万站次温盐实测历史调查资料,对经过 26 种严格质量控制方法的综合海温质量符进行分类分析,首次将深度学习技术应用于海洋数据质量控制多分类 (multiclass classification)算法与应用研究。通过人工合成少数类样本和加权损失函数方法减少多数类的频率来降低数据的不平衡,并构建了多层感知器 (Multi-Layer Perceptron, MLP) 和深度神经网络 (Deep Neural Network, DNN) 两个海温资料质量符分类深度学习模型。分类结果表明本文构建的两个深度分类模型能够较准确快速地识别该海域海温数据质量,在 20 975 条温盐剖面资料测试集中分类准确率分别达到 99.63%和 99.69%。海温资料的分类精度评分有着较好的表现,其中正确数据 (QC1) 和数据缺失(QC9) 的正确识别率均达 100%。MLP 和 DNN 多分类质量控制模型可大幅降低传统质量控制方法的工作量,提升海量数据处理速度和分析能力,为海温观测资料在海洋研究与工程中应用提供参考。  相似文献   
5.
梅雨锋上两类中尺度对流系统形成的边界层特征   总被引:3,自引:0,他引:3  
采用具有较高时空分辨率的地面观测资料以及WRF(Weather reasearch and forecasting)模式输出资料,分析了2009年6月29一-30日梅雨锋暴雨过程中两类不同的中尺度对流系统(rnesoscale convective system,MCS)边界层特征及边界层对两类MCS的触发维持机理,重点分析了海平面气压场特征、边界层冷池、干线及其在MCS中的影响。结果表明:两类中尺度对流系统的海平面气压特征存在着明显的差异,对流爆发阶段地面风场存在辐合线,再次激发阶段气压场呈“跷跷板”型的中尺度扰动,即由前置中低压和后置中高压组成,最强的对流带位于中低压和中高压之间的过渡区内;边界层辐合线是第一类中尺度对流系统(MCSl)维持的重要因素;MCSl爆发后边界层冷池生成,冷池前的冷出流与低层环境风产生的强辐合触发了第二类中尺度对流系统(MCS2);存在于中低压和中高压之间的中尺度干线是MCS2的重要特点之一。  相似文献   
6.
天津地区雷暴大风天气雷达产品特征分析   总被引:5,自引:4,他引:1  
王彦  唐熠  赵金霞  刘广涛  赵刚 《气象》2009,35(5):91-96
应用2002-2007年天津共46次雷暴大风天气过程的新一代天气雷达资料,并结合灾情报告和地面自动气象站资料,根据雷达基本反射率回波特征,影响渤海西部雷暴大风的雷达回波形态有以下四种类型:弓状回波、阵风锋、带状回波和零散椭圆状回波,其中弓状回波对应的雷暴大风天气最为强烈,特别是弓状回波的前部和顶端突起部分;同时弓状回波主体维持时间与雷暴大风维持时间基本一致.另外,应用垂直积分液态水含量产品(VIL)进行了统计分析.结果表明:当VIL值达到或超过40 kg·m~(-2)时,随后VIL值的快速减小对于预警雷暴大风天气有指示意义,这种信息一般能够提前10分钟出现.此外,分析了雷暴大风的路径来源有四类:分别是北方路径有9次,西北路径占19次,西方路径14次和其他路径4次,其中北方路径带来的灾害相对严重.这些特征对预警渤海西部雷暴大风天气提供使用价值,同时也可提供其他地区参考使用.  相似文献   
7.
北大西洋涛动指数变化与北半球冬季阻塞活动   总被引:2,自引:0,他引:2       下载免费PDF全文
柴晶品  刁一娜 《大气科学》2011,35(2):326-338
线性回归分析表明北大西洋涛动(NAO)主要与大西洋、欧洲及乌拉尔山地区阻塞的频率和强度的变化存在显著相关关系.在NAO负位相时期阻塞活动在大西洋地区较为频繁且强度较强,正位相时期大西洋地区阻塞活动减少,强度减弱,而欧洲阻塞加强,频率增加,同时乌拉尔山地区的阻塞活动也显著减少.NAO正指数的增强和减弱对应于大西洋和欧洲阻...  相似文献   
8.
为了进一步拓宽气象信息的发布手段和发布渠道,提升气象服务能力和水平,使社会公众能够便捷地获取到丰富的气象信息。研究依托天津滨海新区气象信息Web服务端,以微信为基础平台,应用Java编程语言、Oracle数据库,Hibernate和Spring框架等技术,通过对微信公众平台API进行开发,以图表、文字、GIS图等展现方式,开发了基于微信网络社区软件的公益气象信息服务平台。本研究充分利用了新型移动传媒发布气象信息的手段,实现了气象信息多形式服务于社会公众,可达到公众及时掌握气象信息的需求。  相似文献   
9.
对2014—2016年中国国家气象中心T639数值预报、日本细网格数值预报、欧洲中心细网格(EC thin)数值预报以及天津市乡镇指导预报产品中在天津地区降水预报分别进行检验。结果表明:所有模式降水的晴雨预报准确率均随预报时效的延长而下降。降水预报准确率在秋冬春季的预报效果明显好于夏季。EC thin产品在冬季降水的预报中优势更为明显,而指导预报及T639对5月、6月及9月天津地区局地降水多发期的降水更有指示意义。针对2014—2016年天津地区的23个暴雨日按影响系统分型并统计检验结果,暴雨日降水预报晴雨成绩较好有参考价值,而降水分级检验偏差较大。相对于局地性暴雨过程,区域性的暴雨过程数值预报有更为可靠的参考性。  相似文献   
10.
多旋翼微型无人机气象探测适用性分析   总被引:1,自引:0,他引:1  
姜明  史静  姚巍  庄庭  连高欣 《气象科技》2018,46(3):479-484
本文通过多种试验对多旋翼无人机搭载微型气象探测设备进行低空温湿度探测和数据传输进行了适用性分析。结果表明,采用433 MHz无线透传的数据通讯方式数据传输稳定性较好,选用的微型气象探测设备温湿度传感器通过了实验室计量检定,与百叶箱温湿度的对比观测中二者一致性较好;无人机在单纯悬停过程中,温湿度观测与对比观测设备误差较小,相关性较好;在低空连续飞行过程中,温湿度观测结果与探空仪观测结果具有较好的一致性(温度平均绝对误差0.84℃,相对湿度平均绝对误差4%),但存在温湿度小脉动变化无法捕捉的情况,可能与设备温湿度响应时间、通风防辐射罩结果、飞行速度等有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号