首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   4篇
  收费全文   1篇
  完全免费   1篇
  海洋学   6篇
  2017年   3篇
  2016年   2篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
海洋微型底栖生物调查方法与操作规程   总被引:1,自引:1,他引:0  
海洋微型底栖生物包括底栖细菌、底栖微藻及底栖原生动物等单细胞原核和真核生物, 是底栖微食物网中能量传递的基础和关键环节, 在海洋生物地球化学循环过程中起着重要作用。然而我国现有的《海洋调查规范》国家标准中有关底栖生物的研究仅涉及利用网筛分选的大型和小型底栖动物, 缺少微型底栖生物调查的方法与规程, 严重制约了对海洋整体食物网能流研究, 以及微型、小型及大型底栖生物间的生态过程与作用等研究。本文提出海洋微型底栖生物调查的关键技术和规程, 包括采样和固定、底栖微藻和细菌调查技术、以及底栖原生动物调查技术, 所涉方法与规程是海洋微型底栖生物调查行业标准的核心内容。本方法与规程适用于潮间带、浅海和深海等不同生境的海洋微型底栖生物调查, 以及利用微型底栖生物进行环境监测与评价。  相似文献
2.
2014年12月和2016年3月分别对热带西太平洋Y3海山(中层海山)和M2海山(浅海山)微食物网主要类群(包括聚球藻、原绿球藻、微微型真核浮游生物、异养细菌和浮游纤毛虫)丰度和生物量垂直分布进行了研究。结果表明,Y3和M2海山水文环境比较相似但略有区别,叶绿素最大值层(DCM)分别在75—100m和110m水层,微食物网各主要类群在垂直尺度上的分布与叶绿素a浓度紧密相关。其中浮游纤毛虫呈现“双峰型”模式,即丰度高值出现在表层和DCM层;原绿球藻和微微型真核浮游生物呈现“单峰型”模式,丰度高值出现在DCM层;聚球藻和异养细菌峰型相对不显著,DCM层以浅丰度较高,DCM层以深丰度明显降低。分析其原因,可能是受到温度、光照和营养盐的共同影响。Y3和M2海山微食物网结构的垂直变化不完全一致。其中,Y3海山30m以浅和150m以深异养细菌生物量占绝对优势,75—100m水层自养型生物(原绿球藻和微微型真核浮游生物)占绝对优势;M2海山75m以浅和200m以深异养细菌占绝对优势,110—150m自养型生物占绝对优势。M2海山自养型生物占优势的水层要明显深于Y3海山,可能与它们的海山类型和采样季节不同有关。  相似文献
3.
张武昌  陈雪  李海波  赵丽  赵苑  董逸  肖天 《海洋通报》2016,35(3):241-251
海洋浮游微食物网包括病毒、细菌、聚球藻蓝细菌、原绿球藻、微微型自养真核生物、微型浮游动物 ( 混合营养和 异养鞭毛虫、纤毛虫 ) 等生物类群,其中病毒、细菌及微型浮游动物等异养生物类群是海洋中氮、磷营养盐再生的重要贡献 者。海洋中细菌吸收还是释放营养盐取决于细菌与底物中元素的比例,在多数海区,异养细菌都是吸收营养盐。病毒主要通 过溶解宿主来释放宿主细胞中的物质,释放的营养元素的存在形态大多为有机物。微型浮游动物对营养盐的再生主要通 过排泄来完成,目前在实验室内测定微型浮游动物排泄率的研究比较少,进行研究的主要困难有两个:第一,微型浮游 动物的室内培养较难;第二,测定微型浮游动物的代谢率技术难度较高。根据已有研究结果,鞭毛虫的单位体重排氮率为 2. 8~140 滋gN ( mgDW) -1 h -1 ,最大排氮率为 7. 0伊10 -9 ~ 13. 8伊10 -6 滋g NH 4 + N cel l -1 h -1 ,再生效率为 0~100 % ;最大排磷率为 3. 8伊10 -9 ~6. 6伊10 -7 滋gP cel l -1 h -1 ,再生效率为 0~100 % 。鞭毛虫的营养盐排泄率和再生效率受鞭毛虫自身的生长阶段和生活 策略、饵料中元素比例及温度的影响。纤毛虫的单位体重排氮率为 0. 25~178 滋gN ( mgDW) -1 h -1 ,最大排氮率为 1. 59 伊10 -7 ~ 1. 2伊10 -4 滋gNH 4 + N cel l -1 h -1 ;单位体重排磷率为 13~363 滋gP ( mgDW) -1 h -1 ,最大排磷率为 0~1. 3伊10 -5 滋gP cel l -1 h -1 。影 响纤毛虫排泄率和再生速率的主要因素为纤毛虫生长阶段和温度。自然海区测定微型浮游生物对营养盐的再生的方法主要为 同位素稀释法,此外还可以根据其他资料推算微型浮游生物的营养盐再生速率及产生率以反映再生能力。多数野外实验结果 证明微型浮游动物是营养盐主要的再生者。  相似文献
4.
张武昌  陈雪  赵苑  赵丽  肖天 《海洋科学集刊》2016,51(51):181-193
微食物环是海洋生态系统中重要的物质和能量过程,是传统食物链的有效补充。微食物环研究是当前海洋生态学研究的热点之一,但对其结构的系统研究较少,海洋微食物网结构在2000年才被Garrison提出。尽管微食物网各个类群的丰度在不同海洋环境中有相对变化,但是这些变化都处于一定的范围之内,其丰度结构约为纤毛虫10 cell ml-1、鞭毛虫103 cell ml-1、微微型真核浮游生物104 cell ml-1、蓝细菌104-5 cell ml-1、异养细菌106 cell ml-1、病毒107 particle ml-1。海洋浮游食物链中捕食者和饵料生物粒径的最佳比值为10:1,实际研究中该比值会略低,例如纤毛虫与其饵料的粒径比值为8:1,鞭毛虫为3:1。Pico和Nano浮游植物的丰度比(Pico:Nano)是研究微食物网结构的指数之一,该指数具有不受研究尺度影响的优点,可用于研究区域性和全球性微食物网结构。近年来,学者们从多角度对海洋微食物网的结构开展了研究,不同海区微食物网各类群丰度、生物量的时间和空间变化研究有很多报道,微食物网的结构可受空间、季节、摄食、营养盐等多种因素影响。在对不同空间微食物网的研究中,学者往往研究不同物理性质的水团中各类群生物丰度的不同,以此来表征微食物网结构的不同;同一海区微食物网结构的季节变化也是使用各个类群丰度和生物量的变化来表示,该变化主要受水文环境因素影响。摄食者对微食物网各类生物的影响通过三种途径:1. 中型浮游动物摄食;2. 中型浮游动物摄食微型浮游动物,通过营养级级联效应影响低营养级生物;3. 中型浮游动物通过释放溶解有机物、营养盐影响细菌和低营养级生物。浮游植物通过产生化感物质和溶解有机物影响微食物网结构,而营养盐的浓度及变化则可以对微食物网产生直接或间接影响。  相似文献
5.
海洋中存在着大量的颗粒,包括大型聚合颗粒(即海雪,粒径>500μm)、小型聚合颗粒(1~500μm)和亚微米颗粒粒径(<1μm)等。颗粒在海水中营造了不同于纯海水的小生境,其中生活着与自然海水中不同的生物。异养细菌、蓝细菌、真核藻类、鞭毛虫、纤毛虫等微食物网生物可以黏附在海洋颗粒上,或生活在颗粒内部,其丰度高于周围水体中的自由生活生物,这可能是由于颗粒提供了更适宜生长的营养环境。本文综述了海洋浮游微食物网生物在海洋颗粒形成和沉降中的作用。微食物网生物在颗粒物的形成过程中起到很重要的作用,它们可以直接促进颗粒形成,也可以彼此结合成颗粒,或微型浮游动物排粪形成颗粒。微食物网生物还可以对颗粒进行转化,影响颗粒的大小、沉降速度、或对颗粒及其黏附生物进行摄食。微食物网生物由于本身较小,沉降较慢,但这些生物和颗粒的结合使得微食物网生物在碳通量中发挥重要的作用。  相似文献
6.
基于2013年4,7,10月和2014年1月的大面调查数据探讨了桑沟湾养殖生态系统浮游植物的粒径结构及生物量时空变化特征。结果表明,桑沟湾海域表层Chl a浓度年变化范围为0.10~20.46 μg/L,平均浓度2.13 μg/L。浮游植物粒径结构以微型浮游植物(nano-phytoplankton)为主,贡献率为65.1%。利用模拟现场流水法探讨了原生动物在能量从微食物环向滤食性贝类传递的重要纽带作用。结果表明,栉孔扇贝通过摄食浮游生物的碳需求为11033.05 μg/(g·d),原生动物(鞭毛虫和纤毛虫)是主要的贡献者,占栉孔扇贝碳需求量的48.78%。微食物环可满足养殖的栉孔扇贝约58.45%的碳需求量。研究结果揭示了微食物环在桑沟湾养殖生态系统中的重要性。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号