首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4933篇
  免费   1020篇
  国内免费   1378篇
测绘学   247篇
大气科学   264篇
地球物理   252篇
地质学   5215篇
海洋学   622篇
天文学   25篇
综合类   410篇
自然地理   296篇
  2023年   121篇
  2022年   139篇
  2021年   160篇
  2020年   139篇
  2019年   157篇
  2018年   135篇
  2017年   146篇
  2016年   194篇
  2015年   236篇
  2014年   379篇
  2013年   283篇
  2012年   379篇
  2011年   411篇
  2010年   351篇
  2009年   283篇
  2008年   295篇
  2007年   242篇
  2006年   237篇
  2005年   231篇
  2004年   183篇
  2003年   210篇
  2002年   184篇
  2001年   192篇
  2000年   161篇
  1999年   189篇
  1998年   204篇
  1997年   198篇
  1996年   238篇
  1995年   213篇
  1994年   178篇
  1993年   171篇
  1992年   149篇
  1991年   107篇
  1990年   93篇
  1989年   77篇
  1988年   12篇
  1987年   12篇
  1986年   7篇
  1985年   8篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1962年   1篇
  1957年   1篇
  1924年   1篇
排序方式: 共有7331条查询结果,搜索用时 15 毫秒
1.
李欢  吴经华  孙文博  刘飚 《地质学报》2023,97(1):262-277
铜与锡具有不同的地球化学性质,然而铜锡共生或复合成矿现象在世界主要铜、锡成矿带中比较常见,如中国的右江、南岭(湘南)、大兴安岭南段(内蒙东部)、葡萄牙伊比利亚、秘鲁安第斯、英格兰德文郡、德国厄尔士山、日本西南、俄罗斯远东、加拿大新不伦瑞克等成矿带均为铜锡复合矿床的集中产区。铜锡复合矿床主要为岩浆热液矿床,以矽卡岩型、脉状矿床为主,兼有火山热液沉积型、斑岩型及云英岩型等。铜矿体的主要矿石矿物为黄铜矿,兼有斑铜矿、黝铜矿、辉铜矿等;锡矿体的主要矿石矿物为锡石,兼有黝锡矿。铜锡复合矿床的成矿物质来源(尤其是铜、锡成矿元素的来源是否具有一致性)尚有不少争议,锡普遍被认为是岩浆来源,而铜的来源具有多样性。成矿流体演化过程中的氧化还原环境的改变及流体的混合是导致铜锡复合成矿的主要原因。目前对于铜锡复合成矿的研究,主要是从矿床的年代学、单矿物(黄铜矿、锡石)微量元素及传统同位素地球化学、流体包裹体等方面入手,但对厘定铜锡复合成矿过程的作用有限。铜锡复合矿床的成因及勘查模型的建立具有重要的理论价值及现实意义。本文提出未来研究可以从多种非传统稳定同位素(例如Cu、Sn、W、Zn同位素)的联合示踪探索、成...  相似文献   
2.
造山带背景铜镍矿床以富水为主要特征,但水(流体)在成矿中的作用以及其对岩石的改造过程仍不明确。本文以黄山南铜镍矿床为例,通过辉橄岩和橄辉岩等超镁铁岩的蚀变矿物组合和H-O同位素变化规律,限定蚀变过程与流体性质及来源。黄山南超镁铁岩原生矿物主要有尖晶石、橄榄石、斜方辉石、单斜辉石和少量填隙状角闪石、云母,蚀变矿物有角闪石(浅闪石、阳起石、透闪石、普通角闪石以及镁闪石)、滑石、绿泥石和蛇纹石等。根据岩石结构与蚀变矿物比例,将超镁铁岩分为弱蚀变、中等蚀变和强蚀变3类。蚀变矿物组合与角闪石成分指示超镁铁岩经历了高温蚀变阶段(>700℃),形成了镁质闪石+滑石+绿泥石;中温蚀变阶段(700~550℃)和低温蚀变阶段(<550℃),分别形成了钙质闪石+滑石+绿泥石+蛇纹石与滑石+碳酸盐+蛇纹石的矿物组合。蚀变岩石普遍以中低温蚀变为主,可能与中低温阶段的叠加-改造作用相关。岩石随蚀变程度增加,Si、Na、K、Mn等主量元素和Rb、Ba等微量元素呈现明显降低趋势,表明大多数元素在流体改造过程中从岩石中迁出,说明蚀变过程为开放体系。中-强蚀变岩石中,硫化物矿物边部的形态呈锯齿状,但主体仍为磁...  相似文献   
3.
滇西马厂箐铜钼多金属矿床位于三江特提斯成矿域,是一个与喜马拉雅期富碱斑岩侵入有关的多金属矿床。前人研究表明,马厂箐铜钼多金属矿床形成于斑岩-矽卡岩成矿系统,但由于缺乏系统矿物学研究,目前对矽卡岩矿化过程和成矿效应仍不清楚,限制了对该矿床成矿过程的全面认识。因此,本文以马厂箐矿床矽卡岩型矿化中的石榴子石为研究对象,利用H-O同位素、电子探针(EPMA)以及LA-ICP-MS原位微区技术开展了同位素及成分分析,限定成矿流体来源以及反演成矿流体演化过程。石榴子石可分为早期自形石榴子石(Grt I)和晚期他形石榴子石(Grt II)。Grt I与辉石共生,并伴有黄铁矿、黄铜矿等金属矿物组合,属于钙铝-钙铁榴石固溶体(And49.37~99.58Gro0~49.79);Grt II更富Fe,属钙铁榴石系列(And67.50~99.85Gro0~31.84)。两期石榴子石均富含Th、U、Nd,亏损Ba、Sr、Hf、Nb,富轻稀土。基于石榴子石矿物化学特征认为,Grt I可能是在弱酸性、氧化、低水岩比(W/R)条...  相似文献   
4.
瓦斯突出是一种常见的煤矿动力灾害现象,随着煤矿矿井开采深度的增加,煤层瓦斯含量、压力都呈上升趋势,发生煤与瓦斯突出的危险性加大.传统的瓦斯测量方法只能测量局部离散点瓦斯含量,难以从矿井及采区尺度对瓦斯含量进行预测.因此需要寻求一种能够在采区及工作面布设前预测煤层瓦斯富集程度的高效地球物理方法.背景噪声成像方法已经在城市地下空间、矿产资源等近地表成像中得到广泛的运用.本文将该方法首次应用到阳泉寺家庄煤矿井田区域,采用96个台站记录的连续背景噪声数据,通过互相关方法获得了台站对之间的瑞利面波经验格林函数,并进一步提取了 5 Hz~1.4 s的基阶瑞利面波的群速度和相速度频散曲线.本研究首先通过区域的平均频散曲线获得该区域的平均一维横波速度结构作为三维反演的初始模型;其次,利用基于射线追踪的面波频散直接成像方法获得研究区1.0 km以浅的三维横波速度结构;最后,结合获得的三维速度结构,以及岩石物理实验获得的瓦斯含量与地震波速度的经验关系,预测了寺家庄井田15号煤的瓦斯含量,预测的瓦斯含量与实际巷道揭露的瓦斯含量具有较好的一致性.本研究成果表明,对于煤矿瓦斯分布预测来说,背景噪声成像方法是一种潜在有效的全新的技术形式.  相似文献   
5.
四川省中厂铜矿位于扬子地台西南缘的康滇地轴中段,赋矿地层为中元古界下部的通安组,铜矿体赋存在通安组第二段和第三段中,铜矿体呈似层状,矿体围岩分别为白云石大理岩、石英变粒岩和含石英大理岩,地层中层间破碎带、滑动带和裂隙发育,并发生硅化、绢云母化、白云石化和褪色等热液蚀变,地层中碳质含量较高,矿床地质特征上判断,成矿经过沉积成岩期和构造-热液改造期,成矿物质为多期多来源,因此认为中厂铜矿床属于沉积-改造型铜矿床。  相似文献   
6.
7.
为研究Airda HTG-4型微波辐射计在成都双流机场的应用效果,利用2017年4月~2018年1月该型辐射计温湿数据,选取雾、积冰、小(阵)雨、雷暴个例进行分析,结果表明:相对湿度和液态水含量在大雾、积冰、弱降水和强对流过程中表现良好。大雾时,近地面相对湿度和能见度的变化有较高的同步率,液态水含量的激增对应了雾的加深。弱降水和强对流过程中,相对湿度多呈“上干、下湿”两层结构;其中,6km以下相对湿度和2.3~4.5km高度的液态水含量变化显著。K指数和沙氏指数SI在对流天气下表现良好,在有明显降水后误差增大,对流过程结束后需要较长时间恢复常态。   相似文献   
8.
对全球电离层反演数据处理中的计算密集型任务进行分析,针对数据预处理、组建法方程矩阵、参数预消除和法方程矩阵求逆等主要模块设计了基于OpenMP(Open Multi-Processing)的并行计算方案。该实验方案在单台服务器下实施,通过算例验证了本文并行计算方案的有效性和可靠性。实验结果表明:采用并行计算后,全球电离层快速解执行时间只需要10~13 min,计算速度加快了约6倍;最终解执行时间只需要39~47 min,计算速度加快了约5倍。本文全球电离层模型精度约为2.8~3.8 TECU,最终解模型精度相比快速解精度提高了约0.2 TECU,与IGS各个分析中心电离层产品精度基本相当。  相似文献   
9.
为解决面向航海应用的底质范围分布问题,提出了一种基于含砾Folk三角形的底质范围生成方法。该方法通过将海图底质注记转化为含砾Folk法底质类型,进而逆向利用Folk(G)三角形,将其拆解为各组分的比例,最后对海区内各组分单独插值并通过地图代数的方法整合各插值结果,生成底质的范围分布。对比实验表明其生成结果较传统的Voronio图法可更好地应用于舰船抛锚等应用场景。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号