首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   39篇
  国内免费   9篇
测绘学   35篇
大气科学   28篇
地球物理   181篇
地质学   82篇
海洋学   47篇
天文学   4篇
综合类   19篇
自然地理   34篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   22篇
  2019年   25篇
  2018年   13篇
  2017年   15篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   20篇
  2012年   19篇
  2011年   21篇
  2010年   15篇
  2009年   30篇
  2008年   26篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   16篇
  2003年   13篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1978年   1篇
排序方式: 共有430条查询结果,搜索用时 62 毫秒
1.
The biodiversity hotspot region of the Eastern Himalayas consists of a vast freshwater network enriched with species diversity. Many small-scale torrential rivers and water reaches contribute to the species pool of all the major rivers by converging downstream. These reaches are most likely to be degraded at a faster rate as compared to the large-scale rivers following an increased rate of urbanization, habitat alterations, and changing climatic conditions. Therefore, this study aims to explore River Murti, which is a representative small scale river system characterized by a large altitudinal gradient and a diverse watershed area. Ichthyofaunal diversity (i.e., diversity, evenness & richness) and 21 environmental variables are measured through a tri-seasonal sampling effort conducted along 14 selected locations. A total of 41 fish species (including species belonging to 4 Near Threatened, 8 Vulnerable, and 1 Endangered) are found inhabiting this river. Ichthyofaunal assemblage is found to be primarily modulated by habitat diversity and landscape variables. Three Aquatic Ecological Systems (AES) have been identified along this river in a top-down approach based on recorded environmental variables. We have calculated an observed/expected ratio for each diversity indices along 14 locations based on predicted temporal variability using boosted regression (BRT) models. The evaluation of diversity status has been kept at 0.5 to account for a 50% loss or deviation from observed (O/E50). This evaluation has been successfully used to delineate AES1 with majorly “Impaired” status and thus ensures its importance in terms of species conservation. Our study indicates the contribution of 11 major environmental drivers modulating the species assemblage patterns in these AES. Amongst them, altitude, substrate coarseness, river morphology, and shelter availability are strongly associated with species diversity as per the BRT models. These underlying factors are also correlated with “basin pressure,” suggesting that anthropogenic disturbances, as well as the changing climate, might play an important role in the gradual change in environmental conditions, which in turn could cause a shift in species assemblage structure.  相似文献   
2.
Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active-source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network-based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.  相似文献   
3.
Successful estimation of airgun-array signatures from near-field measurements depends on the accuracy of poorly controlled model parameters such as the effective sea surface reflection coefficient and source depth. We propose a method for prediction of robust source signatures, which are insensitive to fluctuations of the latter parameters. The method uses vertical pairs of near-field hydrophones to measure near-field pressure and its vertical gradient, combination of which eliminates sea surface reflections from the near-field data. This excludes the uncertainty related to the fluctuating sea state and source depth from the process of inversion of the near-field data for source signature. The method explicitly separates the recorded near-field pressure into its up and down going components, which allows one to measure the effective frequency- and angle-dependent sea surface reflection coefficient right at the source, as well as to estimate the actual source depth. Tests on synthetic and field data demonstrate robust performance of the method.  相似文献   
4.
Western Anatolia hosts many low-to-moderate and high-temperature geothermal sources in which active faults play a dominant role to control the recharge and the discharge of geothermal fluid. In this study, we used the two-dimensional geoelectric structure of Kütahya Hisarcık geothermal field, and created a conceptual hydrogeophysical model that includes faults, real topographical variations and geological units. The temperature distribution and fluid flow pattern are also investigated. The depth extension of Hisarcık Fault, electrical basement and low resistivity anomalies related to the presence of geothermal fluid are determined by using resistivity studies in the area. Numerical simulations suggest that Hisarcık fault functioning as a fluid conduit primarily enables hot fluid to be transported from depth to the surface. It is shown that the locations of predicted outflow vents coincide with those of hot springs in the area.  相似文献   
5.
Providing an accurate estimate of the magnetic field on the Earth's surface at a location distant from an observatory has useful scientific and commercial applications, such as in repeat station data reduction, space weather nowcasting or aeromagnetic surveying. While the correlation of measurements between nearby magnetic observatories at low and mid‐latitudes is good, at high geomagnetic latitudes () the external field differences between observatories increase rapidly with distance, even during relatively low magnetic activity. Thus, it is of interest to describe how the differences (or errors) in external magnetic field extrapolation from a single observatory grow with distance from its location. These differences are modulated by local time, seasonal and solar cycle variations, as well as geomagnetic activity, giving a complex temporal and spatial relationship. A straightforward way to describe the differences are via confidence intervals for the extrapolated values with respect to distance. To compute the confidence intervals associated with extrapolation of the external field at varying distances from an observatory, we used 695 station‐years of overlapping minute‐mean data from 37 observatories and variometers at high latitudes from which we removed the main and crustal fields to isolate unmodelled signals. From this data set, the pairwise differences were analysed to quantify the variation during a range of time epochs and separation distances. We estimate the 68.3%, 95.4% and 99.7% confidence levels (equivalent to the 1σ, 2σ and 3σ Gaussian error bounds) from these differences for all components. We find that there is always a small non‐zero bias that we ascribe to instrumentation and local crustal field induction effects. The computed confidence intervals are typically twice as large in the north–south direction compared to the east‐west direction and smaller during the solstice months compared to the equinoxes.  相似文献   
6.
High‐resolution aeromagnetic data over the Bida Basin, North Central Nigeria has been analysed to investigate the possible continuity of Ifewara fault zone, through the Bida Basin, to Zungeru fault zone. Analytic signal magnitude, horizontal gradient magnitude, and Euler deconvolution methods were applied to the aeromagnetic data to delineate the subsurface structures. The results showed that a prominent NNE–SSW trending fault associated with the Ifewara fault zone extends through the study area. Other faults trending in the ENE–WSW, NE–SW, NW–SE, E–W, and WNW–ESE directions were also mapped. Interpreted models revealed the presence of intrusives and a possible mineralised zone within the study area. We therefore concluded that the inferred fault zones within the basin have affinity with the trend of the Ifewara fault zone, which is an indication of possible extension and linkage with Zungeru fault zone through the Bida Basin.  相似文献   
7.
Inversion of magnetic data is complicated by the presence of remanent magnetization, and it provides limited information about the magnetic source because of the insufficiency of data and constraint information. We propose a Fourier domain transformation allowing the separation of magnetic anomalies into the components caused by induced and remanent magnetizations. The approach is based on the hypothesis that each isolated source is homogeneous with a uniform and specific Koenigsberger ratio. The distributions of susceptibility and remanent magnetization are subsequently recovered from the separated anomalies. Anomaly components, susceptibility distribution and distribution of the remanent and total magnetization vectors (direction and intensity) can be achieved through the processing of the anomaly components. The proposed method therefore provides a procedure to test the hypotheses about target source and magnetic field, by verifying these models based on available information or a priori information from geology. We test our methods using synthetic and real data acquired over the Zhangfushan iron-ore deposit and the Yeshan polymetallic deposit in eastern China. All the tests yield favourable results and the obtained models are helpful for the geological interpretation.  相似文献   
8.
通量距平强迫模式比较计划(FAFMIP)是第六次国际耦合模式比较计划(CMIP6)的子计划之一。FAFMIP共设计了5组试验,利用CMIP6中的大气-海洋耦合环流模式(AOGCM)对海表施加动量通量、热通量和淡水通量扰动,旨在研究在CO2强迫下模式模拟的海洋热吸收,由热膨胀引起的全球平均海平面上升,及由海洋密度和环流导致的动力海平面变化等方面的不确定性。  相似文献   
9.
古气候模拟比较计划(PMIP)是古气候数值模拟领域一项重大的国际合作研究计划,其主旨是为古气候模拟和模拟结果评估提供一个协调机制,理解过去气候变化的物理机制和气候反馈的重要作用,为未来气候预估提供科学依据。同时,通过对比分析验证模式的模拟性能,探索其不确定性,促进耦合气候系统模式的发展。PMIP目前进行到第四阶段(PMIP4)。PMIP4进一步加强了与第六次国际耦合模式比较计划(CMIP6)的协作,选取了5组共同关注的PMIP4-CMIP6古气候模拟试验(中全新世、末次盛冰期、过去千年、末次间冰期和上新世暖期),考察气候系统对不同气候背景的综合响应。除此以外,PMIP4还设计了众多敏感性试验研究不同外强迫因子的影响。PMIP4模拟试验不仅为古气候研究提供大量的模拟数据,还将服务于CMIP6及其他众多模式比较计划。  相似文献   
10.
The past two decades have seen a rapid adoption of artificial intelligence methods applied to mineral exploration. More recently, the easier acquisition of some types of data has inspired a broad literature that has examined many machine learning and modelling techniques that combine exploration criteria, or ‘features’, to generate predictions for mineral prospectivity. Central to the design of prospectivity models is a ‘mineral system’, a conceptual model describing the key geological elements that control the timing and location of economic mineralisation. The mineral systems model defines what constitutes a training set, which features represent geological evidence of mineralisation, how features are engineered and what modelling methods are used. Mineral systems are knowledge-driven conceptual models, thus all parameter choices are subject to human biases and opinion so alternative models are possible. However, the effect of alternative mineral systems models on prospectivity is rarely compared despite the potential to heavily influence final predictions. In this study, we focus on the effect of conceptual uncertainty on Fe ore prospectivity models in the Hamersley region, Western Australia. Four important considerations are tested. (1) Five different supergene and hypogene conceptual mineral systems models guide the inputs for five forest-based classification prospectivity models model. (2) To represent conceptual uncertainty, the predictions are then combined for prospectivity model comparison. (3) Representation of three-dimensional objects as two-dimensional features are tested to address commonly ignored thickness of geological units. (4) The training dataset is composed of known economic mineralisation sites (deposits) as ‘positive’ examples, and exploration drilling data providing ‘negative’ sampling locations. Each of the spatial predictions are assessed using independent performance metrics common to AI-based classification methods and subjected to geological plausibility testing. We find that different conceptual mineral systems produce significantly different spatial predictions, thus conceptual uncertainty must be recognised. A benefit to recognising and modelling different conceptual models is that robust and geologically plausible predictions can be made that may guide mineral discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号