首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  国内免费   16篇
大气科学   11篇
地球物理   6篇
地质学   8篇
海洋学   44篇
综合类   3篇
自然地理   4篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   10篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   6篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
北太平洋涡旋振荡研究进展   总被引:1,自引:0,他引:1  
从观测事实和动力机制两方面,对近年发现的新的气候模态——北太平洋涡旋振荡(NPGO)的研究成果进行系统总结。NPGO的空间结构表现为北太平洋上海表高度异常(SSHA)的正负中心呈南北偶极子分布,当NPGO位于正位相时,南北涡流都加强,这种加强是由风应力旋度及风生涌流所驱动的。关于NPGO的机制研究发现,NPGO是中纬太...  相似文献   
2.
2011年3月日本福岛核电站核泄漏在海洋中的传输   总被引:2,自引:0,他引:2  
使用全球版本的迈阿密等密度海洋环流模式对2011年3月日本福岛核电站泄漏在海洋中的传输以及扩散进行了数值模拟。数值模式中核废料(示踪物)排放情景采取等通量连续排放,排放时间从3月25日开始,分别持续20 d以及1 a,两种情形分别积分20 a。为了减少海洋环流年际变化带来的数值模拟的的不确定性,20 a的模式积分分别用2010年、1991-2011年、1971-1991年以及1951-1971年4个不同时段的NCEP/NCAR逐日再分析资料作为大气强迫场,因此每种排放情形包含4个数值试验。模拟结果的分析表明,不同核废料排放情景及其在不同时段大气资料对海洋模式的驱动下,模拟的示踪物总体的传输扩散路径(包括表层以及次表层)、传输速率以及垂直扩展的范围没有显著的差异。集合平均数值模拟的结果显示:在两种排放情景下,日本福岛核泄漏在海洋的传输路径受北太平洋副热带涡旋洋流系统主导,其传输路径首先主要向东,到达东太平洋后,再向南向西扩散至西太平洋,可能在10~15 a左右影响到我国东部沿海海域,且海洋次表层的传输信号比表层信号早5 a左右。通过进一步分析模式积分过程中最大示踪物浓度随时间变化发现,在积分第20 a(2031年3月),海洋表层和次表层浓度的最高值分别只有模式积分第一年浓度的0.1%和1%。在积分的20 a里,排放的核废料主要滞留在北太平洋海域(超过86%±1.5%的核废料在积分结束时,滞留在北太平洋),而在积分的前10 a(2021年之前),几乎所有的核废料滞留在北太平洋;在核废料的垂直分布上,主要集中在海洋表层至600 m的深度,在积分的20 a时间里,没有核废料信号扩散至1 000 m以下的深度。数值模拟的结果也表明核废料浓度减弱的强度以及演变的时间特征主要受洋流系统的影响,与排放源的排放时间长短关系不大。值得指出的是,更加准确地评估一个真实的核泄漏事故对海洋环境所造成的可能影响,还需要考虑大气中的放射性物质的沉降以及海洋生态对核物质的响应。  相似文献   
3.
使用全球版本的迈阿密等密度海洋环流模式对2011年3月日本福岛核电站泄漏在海洋中的传输以及扩散进行了数值模拟。数值模式中核废料(示踪物)排放情景采取等通量连续排放,排放时间从3月25日开始,分别持续20 d以及1 a,两种情形分别积分20 a。为了减少海洋环流年际变化带来的数值模拟的的不确定性,20 a的模式积分分别用2010年、1991-2011年、1971-1991年以及1951-1971年4个不同时段的NCEP/NCAR逐日再分析资料作为大气强迫场,因此每种排放情形包含4个数值试验。模拟结果的分析表明,不同核废料排放情景及其在不同时段大气资料对海洋模式的驱动下,模拟的示踪物总体的传输扩散路径(包括表层以及次表层)、传输速率以及垂直扩展的范围没有显著的差异。集合平均数值模拟的结果显示:在两种排放情景下,日本福岛核泄漏在海洋的传输路径受北太平洋副热带涡旋洋流系统主导,其传输路径首先主要向东,到达东太平洋后,再向南向西扩散至西太平洋,可能在10~15 a左右影响到我国东部沿海海域,且海洋次表层的传输信号比表层信号早5 a左右。通过进一步分析模式积分过程中最大示踪物浓度随时间变化发现,在积分第20 a(2031年3月),海洋表层和次表层浓度的最高值分别只有模式积分第一年浓度的0.1%和1%。在积分的20 a里,排放的核废料主要滞留在北太平洋海域(超过86%±1.5%的核废料在积分结束时,滞留在北太平洋),而在积分的前10 a(2021年之前),几乎所有的核废料滞留在北太平洋;在核废料的垂直分布上,主要集中在海洋表层至600 m的深度,在积分的20 a时间里,没有核废料信号扩散至1 000 m以下的深度。数值模拟的结果也表明核废料浓度减弱的强度以及演变的时间特征主要受洋流系统的影响,与排放源的排放时间长短关系不大。值得指出的是,更加准确地评估一个真实的核泄漏事故对海洋环境所造成的可能影响,还需要考虑大气中的放射性物质的沉降以及海洋生态对核物质的响应。  相似文献   
4.
Summary of results from a high - resolution pan - Arctic ice - ocean model are presented for the northern North Pacific, Bering, Chukchi, and Beaufort seas. The main focus is on the mean circulation, communication from the Gulf of Alaska across the Bering Sea into the western Arctic Ocean and on mesoscale eddy activity within several important ecosystems. Model results from 1979 -2004 are compared to observations whenever possible. The high spatial model resolution at 1/12o (or -9 - km) in the horizontal and 45 levels in the vertical direction allows for representation of eddies with diameters as small as 36 km. However, we believe that upcoming new model integrations at even higher resolution will allow us to resolve even smaller eddies. This is especially important at the highest latitudes where the Rossby radius of deformation is as small as 10 km or less.  相似文献   
5.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   
6.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   
7.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   
8.
9.
The depth distributions of the radiolarian fauna in the Chukchi and Beaufort Seas, marginal seas of the western Arctic Ocean, were examined quantitatively in depth-stratified plankton tows from 4 or 5 intervals above 500 m and in surface sediments from various depths between 163 and 2907 m. The radiolarian assemblage from the water column in September 2000 was dominated by Amphimelissa setosa and followed by the Actinomma boreale/leptoderma group, Pseudodictyophimus gracilipes and Spongotrochus glacialis. These species are related to the Arctic Surface Water shallower than 150 m. This assemblage is similar to that in the Greenland Sea relating to the ice edge, but did not contain typical Pacific radiolarians in spite of the flow of water of Pacific origin in this region. The living depth of Ceratocyrtis historicosa was restricted to the relatively warm water between 300 and 500 m corresponding to the upper Arctic Intermediate Water (AIW) originating from the Atlantic Ocean. Radiolarian assemblages in the surface sediments are similar to those in the plankton tows, except for common Cycladophora davisiana in sediment samples below 500 m. C. davisiana is probably a deep-water species adapted to the lower AIW or the Canadian Basin Deep Water ventilated from the shelves.  相似文献   
10.
Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010   总被引:3,自引:0,他引:3  
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration(SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic(CARLIC)—is unique in our analysis period of 2003–15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements.Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号