首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
  国内免费   9篇
测绘学   1篇
地球物理   14篇
地质学   36篇
海洋学   14篇
天文学   3篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   9篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

Since piles are one of the major geotechnical foundation systems, estimation of their axial bearing capacity is of great importance. Employing different design methods, resulting in a wide range of bearing capacity estimations, complicates the selection of an appropriate design scheme and confirms the existence of model error along with the inherent soil variability in bearing capacity prediction. This paper tends to evaluate different predictive methods in Reliability-Based Design (RBD) framework. In this regard, different static analyses, SPT and CPT-based methods are considered to evaluate which approaches collectively and which method individually, have more reliable predictions for compiled data bank. In order to assess reliability indices and resistance factors, two approaches have been considered, i.e. First Order Second Moment method (FOSM) and First Order Reliability Method (FORM). To investigate the reliability indices for different methods in both RBD approaches, various safety factors and loading ratios have been considered. Also, the Load and Resistance Factor Design (LRFD) resistance factors are calibrated for different target reliability indices and loading ratios. Results show that CPT-based methods are more reliable among other methods. Furthermore, the estimated efficiency ratio, i.e. the ratio of resistance factor to resistance bias factor, confirms this agreement.  相似文献   
2.
This paper emphasises the true realisation of Cone Penetration Test (CPT) profiles considering non-stationary nature of the data. Formulation of stationary random field theory has been modified and adapted to non-stationary state in order to take into account the mean and variance variability for soil properties. Multi-variance correlation matrix along with the Cholesky decomposition technique was employed to produce realisations of non-homogenous and non-stationary random fields of CPT profiles. A piecewise and segmental data realisation according to the lithology and site class specifications acquired directly from CPT data is adopted in this study so as to render an accurate data simulation. For validation of proposed method 8 CPT test profiles collected from Urmia Lake site have been introduced and simulated by the stationary and non-stationary algorithms. The mean correlation coefficient between the actual CPT data profiles and related realisations along with some other important statistical parameters and their coefficients of variation strongly demonstrate that non-stationary random field generation technique gives quite better accuracy, by comparison to the conventional stationary random field generation scheme.  相似文献   
3.
4.
Separation of the effects of initial horizontal stress and relative density on cone tip resistance in sandy soils has been a complicated issue for many years. In order to overcome this problem, a numerical modeling of CPT which has been verified by calibration chamber tests, has been used in this paper to achieve a reliable analytical solution. The analytical solution has resulted in two relationships for sleeve friction and cone tip resistance in terms of the initial conditions of sandy soil. Based on the presented solution, the initial horizontal stress and relative density can be determined according to CPT measurements.  相似文献   
5.
For the past four decades, the CPT has played a key role in onshore and offshore soil investigations. One of the main applications of cone penetration test (CPT) is the soil behavioral classification. Most of the developed methods for soil identification using CPT and CPTu (piezocone) data are well categorized for common soils, such as clays, silts, and sands. Soils with low resistance or more compressibility generally involve problems in geotechnical engineering practice and construction projects. Consequently, these unusual deposits require further evaluation and more detailed data. Five major groups of problematic soils including: liquefiable, sensitive, peaty, collapsible, and expansive soils have been considered in this study. One hundred and forty CPT and CPTu test records were collected from fifteen countries. Sixty-one of the records are related to difficult soils. A brief comparison is performed for currently used soil behavioral classification charts, such as by Campanella et al. (1985 Campanella, R. G., P. K. Robertson, D. Gillespie, and J. Greig. 1985. Recent developments in in-situ testing of soils. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, San Francisco, Vol. 2, 849–54. [Google Scholar]), Robertson (1990 Robertson, P. K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal 27 (1):15158. doi:10.1139/t90–014[Crossref], [Web of Science ®] [Google Scholar]), Jefferies and Davies (1991 Jefferies, M. G., and M. P. Davies. 1991. Soil classification using the cone penetration test: Discussion. Canadian Geotechnical Journal 28 (1):17376. doi:10.1139/t91–023[Crossref], [Web of Science ®] [Google Scholar]) and Eslami and Fellenius (1997 Eslami, A., and B. H. Fellenius. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal 34 (6):886904. doi:10.1139/cgj-34–6-886[Crossref], [Web of Science ®] [Google Scholar]). Analysis based on CPT data indicates that a few commonly used charts recognize relatively well problematic deposits. However, further studies are needed to increase the accuracy and capability of methods. Existing charts have some problems due to the limitations of the nature of rectangular charts based on two axes. A new format of classification chart, i.e., triangular form containing cone tip resistance (qc), sleeve friction (fs), and pore pressure (u2) is proposed for soil identification which can be realized in practice. The proposed chart with more accuracy and less scattering of data than the previous charts is able to identify soil types particularly for deltaic soils.  相似文献   
6.
Helical piles are structural deep foundation elements, which can be categorized as torque-driven piles without any limitations to implement in marine situations. Different methods are used to predict the axial capacity of helical piles, such as static analysis, but have some limitation for this type of piles on marine conditions. In situ testing methods as supplement of static analysis have been rarely used for helical piles. In geotechnical engineering practice, the most common in situ tests particularly applicable for coastal or offshore site investigation are cone penetration test (CPT) and piezocone penetration test (CPTu). The CPT is simple, repeatable, and prepares the continuous records of soil layers. In this paper, a data bank has been compiled by collecting the results of static pile load tests on thirty-seven helical piles in ten different sites including CPT or CPTu data. Axial capacities of thirty-seven helical piles in different sites were predicted by direct CPT methods and static analysis. Accuracy estimation of ten direct CPT methods to predict the axial capacity of helical piles was investigated in this study. Comparisons have been made among predicted values and measured capacity from the pile load tests. Results indicated that the recently developed methods such as NGI-05 (2005), ICP-05 (2005), and UWA-05 (2005) predicted axial capacity of helical piles more accurately than the other methods such as Meyerhof (1983), Schmertmann (1978), Dutch (1979), LCPC (1982), or Unicone (1997). However, more investigations are required to establish better correlation between CPT data and axial capacity of helical piles.  相似文献   
7.
张浩 《海洋地质前沿》2014,(2):46-49,55
上海地区(及其他软土地区)以静探触探作为岩土工程勘察的主要原位测试手段,积累了大量的工程数据,其结果稳定可靠,重现性好,具客观性。采用上海地区静探液化判别方法,对收集的大量资料进行统计分析,以期通过静探Ps值快速、简单地作出地基土是否液化的初步判断,有效指导勘察设计工作。  相似文献   
8.
Cone penetration test (CPT) and standard penetration test (SPT) are widely used for the site specific evaluation of liquefaction potential and are getting increased use in the regional mapping of liquefaction hazard. This paper compares CPT and SPT-based liquefaction potential characterizations of regional geologic units using the liquefaction potential index (LPI) across the East Bay of the San Francisco Bay, California, USA and examines the statistical and spatial variability of LPI across and within geologic units. Overall, CPT-based LPI characterizations result in higher hazard than those derived from the SPT. This bias may result from either mis-classifications of soil type in the CPT or a bias in the CPT simplified procedure for liquefaction potential. Regional mapping based on cumulative distribution of LPI values show different results depending on which dataset is used. For both SPT and CPT-based characterizations, the geologic units in the area have broad LPI distributions that overlap between units and are not distinct from the population as a whole. Regional liquefaction classifications should therefore give a distribution, rather than a single hazard rating that does not provide for variability within the area. The CPT-based LPI values have a higher degree of spatial correlation and a lower variance over a greater distance than those estimated from SPTs. As a result, geostatistical interpolation can provide a detailed map of LPI when densely sampled CPT data are available. The statistical distribution of LPI within specific geologic units and interpolated maps of LPI can be used to understand the spatial variability of liquefaction potential.  相似文献   
9.
该文讨论在软基地区修建高速公路时,用碎石桩进行软基处理效果的检测方法,并对其合理运用提出了建议。  相似文献   
10.
黄河水下三角洲沉积物强度变化原位测试研究   总被引:14,自引:8,他引:14  
研究区位于1964~1976年黄河由刁口入海时形成的水下三角洲叶瓣上。1995年为石油开采在潮坪上构筑的交通设施对波浪形成良好的屏障。在屏障两侧各选一典型研究区,于1999年和2002年进行了大量对比性现场原位土工测试,探讨了波浪对黄河口沉积物的次生改造作用,结果表明:(1)较强的波浪荷载作用,不会提高海底沉积物的表层强度,只是导致不均匀程度随水动力作用的时间增长有所加大:(2)较强的波浪荷载作用,使得海底表层沉积物之下一定深度范围内土体强度提高,形成强度硬层:(3)海底沉积物强度沿着剖面线在平面上呈现周期性或间隔性变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号