首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   97篇
  国内免费   143篇
测绘学   7篇
大气科学   6篇
地球物理   119篇
地质学   249篇
海洋学   414篇
天文学   4篇
综合类   32篇
自然地理   54篇
  2023年   1篇
  2022年   13篇
  2021年   11篇
  2020年   20篇
  2019年   20篇
  2018年   14篇
  2017年   21篇
  2016年   28篇
  2015年   24篇
  2014年   37篇
  2013年   61篇
  2012年   35篇
  2011年   44篇
  2010年   51篇
  2009年   42篇
  2008年   47篇
  2007年   52篇
  2006年   41篇
  2005年   51篇
  2004年   26篇
  2003年   41篇
  2002年   31篇
  2001年   32篇
  2000年   20篇
  1999年   14篇
  1998年   13篇
  1997年   13篇
  1996年   11篇
  1995年   18篇
  1994年   10篇
  1993年   9篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
1.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   
2.
We estimated monthly fluxes of 210Pb in shelf sediments beneath a high productivity area off central-southern Chile (36°S) during 1 year (September 2002-August 2003). Sediment cores were obtained using a multiple corer and were analyzed mainly for 210Pb, total pigments, and macrofauna abundance. The 210Pb inventories and fluxes were estimated for surface sediments (0-5 cm) and bioturbation coefficients were inferred using chlorophyll-a (reactive) profiles. In general, 210Pb content was inversely correlated with phytodetritus fluxes. High photosynthetic pigment contents in surface sediments were consistently associated with lower 210Pb contents. Macrofaunal activity responded to oxygen and organic matter supplies at the sediment surface, generally concentrated in the first centimeters, but particularly so during months of high organic matter fluxes and deficient bottom water oxygen conditions. At this study site, several processes involved in the 210Pb surface distribution make it difficult to accurately estimate ages at the surface. We postulate that the organic fluxes promote changes in the faunal activity, which, in combination with sediment resuspension and water circulation over the shelf, produce seasonal variations in the 210Pb inventories.  相似文献   
3.
4.
试论东海陆架盆地的基底构造演化和盆地形成机制   总被引:4,自引:0,他引:4  
本文主要根据东海陆架盆地和周边的地质、地球物理资料,分析盆地的基底岩性特征、结构特征。认为东海陆架盆地的基底除元古界片麻岩外,还分布有一定范围的中生界及古生界。基底构造特征是纵向上多层次,横向上不均一,南北有别,东西分带。构造演化上经历了张、合、压、扭等复杂过程。  相似文献   
5.
南黄海和东海北部陆架重矿物组合分区及来源   总被引:17,自引:0,他引:17  
利用大洋-50型海底取样器,在南黄海和东海北部陆架(125°E以西)海上调查获取了海底表层沉积物样品,其中包括1998年以来"黄东海地质地球物理补充调查"和"中韩黄海沉积动力学与古环境演变"2项研究所获得的样品共380个,选取0.063~0.125mm粒级的沉积物,进行碎屑矿物分析,最后选出9个代表性的优势重矿物种的数据为变量,利用Q型聚类(分层聚类)的数学方法,进行聚类组合,在数学统计的基础上,将研究区划分出4个重矿物组合区。客观地反映出黄河物质、长江物质和原地物质的影响范围,同时也体现出物质来源和水动力以及海底风化作用对重矿物分布的影响程度和范围,因而可以得出,在一定的范围内陆架表层沉积物中的重矿物具有趋同的演化效应。  相似文献   
6.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   
7.
8.
9.
Samples of O isotopic tracer were mlleMed at Sections P3,P25,PcM-t/2-E and PCM-1/2.w in both the Fast China Sea and the area to the east of the Ryūkyū-gunto during October-November,1991.Analytical results of the δ18O are as follows: (1) In the Kuroshio area,the δ18O isolines are almost parallel to the 200 m isobath.The value of δ18O is negative and reaches minimum mt the main axis of the Kuroshio,and increases on both sides.(2) In the Taiwan Warm Current (TWC) area there is a high δ18O tongue extending to the northeast.(3) In the area near the coast,the distribution of δ18O isoline shows that the Changjiang River runoff diffuses seaward and the land-ocean isotopic effect from the nearshore to the offshore.(4) The values of δ18O are from -1.0×10-3 to -0.5×10-3 in the shelf.(5) There is a low mre of δ18O value(<-1.6×10-3) at the 600 m layer in the Kuroshio area,which is quite in accord with the existence of a low salinity mre (S G 34.30) between the 600 and 800 m layers in the same area.Finally,the mrrelations of the δ18O with the salinity and temperature,the upwelling and so on are discussed.  相似文献   
10.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号