首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   2篇
地球物理   63篇
地质学   9篇
海洋学   7篇
天文学   2篇
自然地理   10篇
  2023年   5篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有95条查询结果,搜索用时 203 毫秒
1.
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2 mol l−1 NaCl or 0.2 mol l−1 NaCl plus 100 mg l−1 sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem II activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2 mol l−1 NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions.  相似文献   
2.
Silicified deposits, such as sinters, occur in several modern geothermal environments, but the mechanisms of silicification (and crucially the role of microorganisms in their construction) are still largely unresolved. Detailed examination of siliceous sinter, in particular sections of microstromatolites growing at the Krisuvik hot spring, Iceland, reveals that biomineralization contributes a major component to the overall structure, with approximately half the sinter thickness attributed to silicified microorganisms. Almost all microorganisms observed under the scanning electron microscope (SEM) are mineralized, with epicellular silica ranging in thickness from < 5 μm coatings on individual cells, to regions where entire colonies are cemented together in an amorphous silica matrix tens of micrometres thick. Within the overall profile, there appears to be two very distinct types of laminae that alternate repeatedly throughout the microstromatolite: ‘microbial’ layers are predominantly consisting of filamentous, intact, vertically aligned, biomineralized cyanobacteria, identified as Calothrix and Fischerella sp.; and weakly laminated silica layers which appear to be devoid of any microbial component. The microbial layers commonly have a sharply defined base, overlying the weakly laminated silica, and a gradational upper surface merging into the weakly laminated silica. These cyclic laminations are probably explained by variations in microbial activity. Active growth during spring/summer allows the microorganisms to keep pace with silicification, with the cell surfaces facilitating silicification, while during their natural slow growth phase in the dark autumn/winter months silicification exceeds the bacteria’s ability to compensate (i.e. grow upwards). At this stage, the microbial colony is probably not essential to microstromatolite formation, with silicification presumably occurring abiogenically. When conditions once again become favourable for growth, recolonization of the solid silica surface by free‐living bacteria occurs: cell motility is not responsible for the laminations. We have also observed that microbial populations within the microstromatolite, some several mm in depth, appear viable, i.e. they still have their pigmentation, the trichomes are not collapsed, cell walls are unbroken, cytoplasm is still present and they proved culturable. This suggests that the bulk of silicification occurred rapidly, probably while the cells were still alive. Surprisingly, however, measurements of light transmittance through sections of the microstromatolite revealed that photosynthetically active light (PAL) only transmitted through the uppermost 2 mm. Therefore the ‘deeper’ microbial populations must have either: (i) altered their metabolic pathways; (ii) become metabolically inactive; or (iii) the deeper populations may be dominated by different microbial assemblages from that of the surface. From these collective observations, it now seems unequivocal that microstromatolite formation is intimately linked to microbial activity and that the sinter fabric results from a combination of biomineralization, cell growth and recolonization. Furthermore, the similarities in morphology and microbial component to some Precambrian stromatolites, preserved in primary chert, suggests that we may be witnessing contemporaneous biomineralization processes and growth patterns analogous to those of the early Earth.  相似文献   
3.
蓝细菌聚金作用实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
林丽  朱利东 《地质科学》1998,33(4):483-488
蓝细菌聚金实验研究表明:①不同的生物由于生化组分的差异,其富金能力不同,低等蓝细菌生物比动物细胞富金能力强;②金在细胞中的分布与其各部分生化组成(也就是生物配体)密切相关;③金离子进入细胞不是一种简单的扩散作用,而是通过细胞膜界面两侧物质之间的交换而实现的,蓝细菌活体聚金机理主要是参与生命活动的吸收作用;④在较高温热水环境中微生物对成矿最显着。  相似文献   
4.
Cyanobacteria have flexible photosynthetic apparatus that allows them to utilise light at very low levels, making them ideal symbionts for a wide range of organisms. Sponge associations with cyanobacteria are common in all areas of the world, but little is known about them. Recent research has revealed new cyanobacterial symbionts that may be host specific and two major clades, ' Candidatus Synechococcus spongiarum ' and Oscillatoria spongeliae , that occur in widely separated geographic locations in unrelated sponge hosts. These clades may represent a cluster of closely related symbiont species, or may be single species that are maintained by periods of horizontal transmission over large distances. Erroneous assumptions regarding the importance of cyanobacterial symbionts to the survival of individual sponges or species may arise from cyanosponges being deemed to be phototrophic or mixotrophic without studies of their photophysiology. This review brings together recent and past research on cyanobacterial associations with sponges, including their biogeography, phylogeny, host specificity, and ecology.  相似文献   
5.
Raman spectra of an extremophile cyanobacterial colony in hydromagnesite from Lake Salda in Turkey have revealed a biogeological modification which is manifest as aragonite in the stratum associated with the colony. The presence of key spectral biomarkers of organic protectant molecules such as β-carotene and scytonemin indicate that the survival strategy of the cyanobacteria is significantly one of UV-radiation protection. The terrestrial location of this extremophile is worthy of consideration further because of its possible putative link with the “White Rock” formations in Sabaea Terra and Juventae Chasma on Mars.  相似文献   
6.
We studied the changes in the submerged aquatic vegetation (SAV) and phytoplankton community in a hard water lake during different meteorological conditions. We hypothesized that variations in climatic conditions (precipitation and temperature) can influence the physicochemical parameters of water and, in turn, affect SAV and phytoplankton development. The investigations were performed in Lake Rogóźno (the West Polesie region, Eastern Poland) over 10 years from 2003 to 2013. The physicochemical parameters, the structure of macrophytes and the phytoplankton community in the dry (2003–2006, DP) and wet periods (2007–2013, WP) were analyzed. Between the dry and wet periods, the water color and the concentration of dissolved organic carbon (DOC) increased considerably, whereas water conductivity decreased. Other parameters (concentration of nutrients, water reaction and transparency) were comparable during both periods. When the precipitation and water level were low (DP), charophytes dominated the SAV and cyanobacteria dominated the phytoplankton community. After the precipitation and water level increased (WP), the charophyte population declined and the vascular plants and bryophytes dominated. Furthermore, flagellated algae belonging to the dinophytes and cryptophytes were the most numerous in the phytoplankton community. These changes in the SAV and phytoplankton were linked with the variations of physicochemical parameters determined by the total precipitation and mean air temperature in March.  相似文献   
7.
Black band disease(BBD),characterized by the Cyanobacterial dominated pathogenic consortium,is thought to play a key role in the global decline of the coral reef ecosystems.The present paper originally documents a case of BBD from Yongxing Island(Xisha Islands,South China Sea),and further probes the reasons of this abnormal phenomenon.Prior to 2007,corals at northern reef-flat of Yongxing Isand were in healthy growth.Catastrophic coral mortality occurred between 2007 and 2008.The 16S rRNA gene sequencing and PCR amplification,with universally conserved primers,were applied to detect the contagious bacterial community of the microbial mat.The results demonstrated that six bacterial divisions constituted the clone libraries derived from the BBD mat,and that Cyanobacteria are the most diversely represented group that inhabit BBD bacterial mats,despite the fact that species in five others divisions(α-Proteobacteria,γ-Proteobacteria,Bacteroidetes,Verrucomicrobia and Actinobacteria) are also consistently diverse within the BBD mats of diseased coral.Other factors such as coral bleaching,typhoons,ocean acidification and crown-of-thorns starfish outbreaks,are not primarily responsible for the coral mortality within such a short time interval.The disaster expansion of BBD associated with Cyanobacterial blooms is a more likely mechanism impacting these coral reefs.Excessive human activity enhances the eutrophication of the marine water of the reefal region and may result in occurrence of the BBD.  相似文献   
8.
Defining reference conditions for lakes situated in areas of human settlement and agriculture is rarely straightforward, and is especially difficult within easily eroding and nutrient rich watersheds. We used diatoms, cyanobaterial akinetes, remains of green algae and chironomid head capsules from sediment samples of Lake Kirmanjärvi, Finland, to assess its deviation from the initial ecological status. These site-specific records of change were compared to current type-specific ecological status assessment. All paleolimnological data indicated deviation from natural conditions and mirrored the current, monitoring-based assessment of “moderate” ecological lake status. However, the sediment data showed that the lake should be re-typified as a naturally eutrophic lake. Sediment records as well as current monitoring data indicated temporary improvement in water quality in response to extensive fish manipulation. Our results suggest that paleolimnological records can be used to derive site-specific reference conditions and that extensive restoration efforts can result in gradual, observable improvements of water quality and ecological status.  相似文献   
9.
The phytoplankton assemblage of Zhubi Reef, a closed coral reef in Nansha Islands (South China Sea, SCS) was studied in June 2007. A total of 92 species belonging to 53 genera and four phyla have been identified. The dominant taxa in the lagoon were the diatom Chaetoceros and cyanobacteria Nostoc and Microcystis, while in reef flats were cyanobacteria Trichodesmium erythraeum, dinoflagellates Gymnodinium and Prorocentrum. The species richness and diversity were consistently lower in the lagoon than in reef flats. Classification and nMDS ordination also revealed significant dissimilarity in phytoplankton community structure between the reef flat and lagoon, with statistical difference in species composition and abundance between them (ANOSIM, p = 0.025). Nutrient concentrations also spatially varied, with ammonium-enrichment in the lagoon, while high Si-concentration existed in reef flat areas. Both nutrient levels and currents in SCS may play important roles in determining the composition and distribution of microalgae in Zhubi Reef and SCS.  相似文献   
10.
Previous work showed the cryptoendolithic microbial communities of the Colorado Plateau act to harden the surfaces of Jurassic Navajo Sandstone outcrops via the production of extracellular polymeric substances (EPS). It is our hypothesis that EPS produced in these systems serve to trap ions and maintain hydration. EPS isolated from in vitro and in vivo biofilms bind 200–600 nmol of ferrous iron per 10 g of biofilm sample. Initial characterizations of the EPS used preparations from two distinct microbial cultures grown in semi-submerged conditions with EPS harvested from approximately one-half of each culture immediately, the remaining biofilm was allowed to dry before the EPS was harvested. Analysis of ferrous iron binding of the four preparations showed that the culture dominated with non-filamentous cells only produced a chelating moiety after desiccation. Conversely, the second culture dominated by filamentous cells produced a ferrous iron binding activity when semi-submerged. Biochemical characterization showed that the extracted EPS was acidic, containing 37% uronic acid. Neither the EPS nor the biofilms had the ability to retain water though an increase in the rate of water loss was noted. We conclude that EPS produced by these communities are involved in nutrient capture as well as stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号