首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   9篇
  国内免费   1篇
地球物理   3篇
地质学   27篇
天文学   1篇
综合类   1篇
自然地理   6篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
2.
3.
青藏高原及周边山地拥有地球上最高大且最广阔的高山高原,是除两极外最大的现代冰川作用中心,这也使得中国成为中低纬度地区现代冰川最发育的国家之一.现代冰川平衡线分布具有纬度地带性特征,在青藏高原上还呈不对称的环状.根据相关研究资料估算,中国末次冰期最盛期时的冰川面积约为50×104km2,是现代的8.4倍.基于平衡线处年降水量和夏季平均气温(6-8月)之间的相关关系重建的中国西部(105°E以西)末次冰期最盛期时的平衡线分布图与现代的相似.在青藏高原内部与西北部,平衡线下降值在500 m以内,小的仅为200~300 m;在青藏高原东南边缘下降值约800m,最大可达1 000~1 200 m.天山与阿尔泰山平衡线下降值均在500 m左右.中国东部(105°E以东)没有发育现代冰川,仅有数处中高山地,如贺兰山、太白山、长白山与台湾山地保存有确切的末次冰期冰川地形,末次冰期最盛期时的平衡线下降800~900 m,大于青藏高原、天山与阿尔泰山地区的下降值.根据中国东部末次冰期的平衡线分布图以及相关的古气候与古环境研究资料,海拔2 000 m以下的中低山地在第四纪期间任何一次冰川作用中都不具备冰川发育所需的地势条件.  相似文献   
4.
近50年来北极斯瓦尔巴地区冰川物质平衡变化特征   总被引:3,自引:2,他引:1  
利用长时间序列的冰川物质平衡资料,详细分析了北极斯瓦尔巴地区冰川的物质平衡变化特征以及气候因子对物质平衡的影响。结果表明:近50年来斯瓦尔巴地区冰川物质平衡变化主要呈负平衡、零平衡/略微增长两种状态。冰川净平衡一般为负值,年际变化波动幅度较大且呈负平衡趋势,累积物质平衡表现出长期稳定的负平衡增长态势。除Kongsvegen冰川外,其他冰川不存在短期内的平衡波动。季节变化表现为夏季消融、冬季积累,且夏季消融比冬季积累波动更大,冰川净平衡与夏季消融保持同步变化趋势。冰川净平衡与平衡线高度(ELA)呈负相关(平均相关系数为-0.89),与积累区面积比率(AAR)呈正相关(平均相关系数为0.84),该地区大多数冰川AAR减小,说明冰川物质补给处于劣势,冰川物质平衡向负平衡发展。夏季气温升高是斯瓦尔巴地区冰川表面物质加速亏损的直接原因。  相似文献   
5.
Small mountain glaciers have short mass balance response times to climate change and are consequently very important for short‐term contributions to sea level. However, a distinct research and knowledge gap exists between (1) wider regional studies that produce overview patterns and trends in glacier changes, and (2) in situ local scale studies that emphasise spatial heterogeneity and complexity in glacier responses to climate. This study of a small glacier in central Austria presents a spatiotemporally detailed analysis of changes in glacier geometry and changes in glaciological behaviour. It integrates geomorphological surveys, historical maps, aerial photographs, airborne LiDAR data, ground‐based differential global positioning surveys and Ground Penetrating Radar surveys to produce three‐dimensional glacier geometry at 13 time increments spanning from 1850 to 2013. Glacier length, area and volume parameters all generally showed reductions with time. The glacier equilibrium line altitude increased by 90 m between 1850 and 2008. Calculations of the mean bed shear stress rapidly approaching less than 100 kPA, of the volume–area ratio fast approaching 1.458, and comparison of the geometric reconstructions with a 1D theoretical model could together be interpreted to suggest evolution of the glacier geometry towards steady state. If the present linear trend in declining ice volume continues, then the Ödenwinkelkees will disappear by the year 2040, but we conceptualise that non‐linear effects of bed overdeepenings on ice dynamics, of supraglacial debris cover on the surface energy balance, and of local topographically driven controls, namely wind‐redistributed snow deposition, avalanching and solar shading, will become proportionally more important factors in the glacier net balance.  相似文献   
6.
天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究   总被引:42,自引:23,他引:19  
刘时银 《冰川冻土》1998,20(1):9-13
应用度日物质平衡模式对天山乌鲁木齐河源1号冰川物质平衡及平衡线高度对气候变化的敏感性进行了研究.结果表明,位于大陆性气候区且具有暖季补给特征的乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性要小于海洋性冰川,升温1℃或增加20%的降水可引起平衡线上升81m或下降31m.此外,气温与降水在物质平衡形成过程中的作用是不同的,气温引起物质平衡剖面以旋转方式变化,而降水可导致其平移方式的响应.若未来升温2℃时,即使降水增加30%,1号冰川向负平衡变化仍然不能得到遏制.  相似文献   
7.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation–area ratio (AAR), maximum elevation of lateral moraines (MELM), toe–to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ELA △ values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.  相似文献   
8.
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10−5 to 114×10−5 km3 yr−1 and 112×10−5 to 247×10−5 km3 yr−1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10−5 to 220×10−5 km3 yr−1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.  相似文献   
9.
青藏高原及毗邻山地利用冰川地貌重建古气候的研究综述   总被引:4,自引:4,他引:0  
崔航  曹广超  陈克龙  郭华  蒋刚 《冰川冻土》2021,43(1):254-262
利用冰川地貌定量重建冰期时的古气候特征是探讨冰川驱动机制的关键。利用冰川地貌反演古气候的模型主要有两类:基于物质平衡线高度变化和基于估算古冰川表面物质平衡的气候重建模型,因其原理、所需数据量的不同,适用性存在着差异,应用时需根据冰川区的具体特征选取多种模型重建古气候,提高模拟的精度。青藏高原及毗邻山地已有的基于古冰川的气候重建数据显示:MIS 6以来冰川变化为气温变化驱动,冰川规模还受降水量增多的影响;MIS 3中期冰川的规模较之末次冰盛期(Last Glacial Maximum,LGM)更大,主要是该较冷的亚阶段降水比LGM时期更为丰沛所致。  相似文献   
10.
Three glacial stages (Deshkit 1, Deshkit 2 and Dishkit 3 glacial stages) are identified in the Nubra and Shyok valleys in northernmost Ladakh, northwest India, on the basis of geomorphic field mapping, remote sensing, and 10Be terrestrial cosmogenic nuclide surface exposure dating. The glacial stages date to ∼ 45 ka (Deshkit 1 glacial stage), ∼ 81 ka (Deshkit 2 glacial stage) and ∼ 144 ka (Deshkit 3 glacial stage). A mean equilibrium line altitude depression of ∼ 290 m for the Deshkit 1 glacial stage was calculated using the area accumulation ratio, toe-to-headwall ratio, area-altitude, and area-altitude balance ratio methods. Comparison of glaciation in the Nubra and Shyok valleys with glaciations in the adjacent Central Karakoram of northern Pakistan and northern side of the Ladakh Range of northern India indicates that glaciation was synchronous on Milankovitch timescales across the region during MIS-6, but differed greatly in extent, with more extensive glaciation in the Karakoram than the morphostratigraphically equivalent glaciation on the northern slopes of the Ladakh Range. This highlights the strong contrast in the extent of glaciation across ranges in the Himalaya-Tibetan orogen, necessitating caution when correlating glacial successions within and between mountain ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号