首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  国内免费   19篇
大气科学   2篇
地球物理   13篇
地质学   19篇
海洋学   35篇
综合类   2篇
自然地理   7篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
This work presents measurements and analysis of sand particle velocities over a subaqueous dune with median sand diameter of 0.85 mm. Time-lapse images of the mobile bed and an automated particle image velocimetry (PIV)-based cross-correlation method are used to obtain mean velocity of sand particles. This technique is shown to be consistent with measurements obtained with manual tracing. The measurements indicate an increase in mean particle velocity over a dune slope. Three regions are distinguished over the dune slope: (1) region of fluctuating particle velocity, (2) region of increasing particle velocity, and (3) region of maximum particle velocity. The observations are aligned with experimental and numerical modelling studies, indicating fluctuations in flow velocity over a dune stoss slope. We furthermore show that the standard deviation of the mean particle velocity is affected by the slope location and decreases from the lower slope towards the upper slope. The particle velocity variability is discussed in the context of general onset and cessation of sediment transport, the effect of the reattachment zone, sweep-transport events, and the existence of superimposed bedforms. With this work we bridge the gap between measurements of bedload transport at the particle-scale and at the bedform-scale. © 2019 John Wiley & Sons, Ltd.  相似文献   
2.
In the present paper some numerical simulations and experiments were carried out to study jet-wall interaction in shallow waters. Namely, modifications of the hydrodynamic field concerning the interaction of river run-off with a shallow coastal water body, due to the presence of marine structures, were investigated. Stratification effects due to salinity and temperature were neglected, and the interest was focused on barotropic features (Coanda effect). The numerical analysis was carried out by means of shallow water equations, numerically solved by finite difference, and the present method was validated by means of a typical simple-shaped test case. The experiments were carried out in a shallow water tank, flow visualizations were performed, and the velocity field was obtained by PIV. The main features of jet-wall interaction flow were investigated in simple-shaped geometries, and applications were shown for two practical cases: Pescara channel harbour (Adriatic Sea, Italy) and the proposed design of Latina harbour (Tyrrhenian Sea, Italy).  相似文献   
3.
An experimental investigation of the airflow structure in the near surface region over the wind-sheared air–water interface is reported. The two-dimensional velocity fields in a plane perpendicular to the water surface were measured using particle image velocimetry (PIV) technique over a wind speed range from 1.5 to 4.4 m s−1. The results show a reduction in the mean velocity magnitudes and the tangential stresses when gravity waves appear on the surface. An enhanced vorticity layer was observed immediately above the water surface that extended to a height of approximately 2 cm. The vorticity was enhanced by an order of magnitude, and the energy dissipation rate was enhanced by a factor of 7 in this layer at all wind speeds. The vertical profiles of Reynolds stress, energy production, and dissipation indicate the contribution of surface waves in the enhanced transfer of momentum and energy between the two fluids. The results in this study show that the flow dynamics in a layer immediately adjacent to the water surface whose thickness is of the order of the significant wave height is significantly different from that at greater heights. Thus, it is concluded that the quantitative investigation of the flow in the immediate vicinity of the interface is vital for an improved understanding of the heat, mass, and momentum exchange between air and water. The present study demonstrates that PIV is an effective technique to accurately measure the velocity fields in this region.  相似文献   
4.
X.K. Wang  S.K. Tan 《Ocean Engineering》2008,35(5-6):458-472
The flow patterns in the near wake of a cylinder (either circular or square in shape, D=25 mm) placed in the proximity of a fully developed turbulent boundary layer (thickness δ=0.4D) are investigated experimentally using particle image velocimetry (PIV). The effects of changing the gap height (S) between the cylinder bottom and the wall surface, over the gap ratio range S/D=0.1–1.0, have been investigated. The results show that both the ensemble-averaged and instantaneous flow fields are strongly dependent on S/D. The flow patterns for the two types of cylinders share many similarities with respect to the change in S/D, such as the reduced recirculation length and increased velocity fluctuation in the near wake with increasing S/D, as well as the trend of suppression of vortex shedding at small S/D and onset of vortex shedding at large S/D. However, developments of the shear layers, in terms of wake width, flow curvature, etc., are considerably different for these two types of cylinders. In general, the wake development and momentum exchange for the square cylinder are slower those for the circular cylinder at the same gap ratio. Correspondingly, it is shown that the periodic vortex shedding is delayed and weakened in the case of square cylinder, as compared to that of the circular cylinder at the same S/D.  相似文献   
5.
A moving particle image velocimetry (PIV) system was successfully developed and used in a large towing tank for ship model tests to observe velocity fields near ship models. The experimental method involved adjustable optical devices for various test conditions and a special particle-seeding device. The streamwise and cross-streamwise flow fields of a yacht model and a tanker model were measured. Ship type, bottom shape, and towing speed were found to be the causes of problems affecting optical access and image quality. Possible solutions, deeper optical ducts, dark painting color, and pre-processed analysis method, were proposed and discussed.  相似文献   
6.
Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights in two water depths along the wave flume are measured for six canopy models, including two canopy heights and three styles of arrangements. The relationships among the decay coefficient, and the dimensionless wave height, submergence ratio, relative height and arrangement of the canopy are experimentally studied. 2D PIV technique is employed to measure the representative flow field inside the canopy. A four-deck flow structure is proposed for wave flow field over shallow submerged canopy. The characteristics of shear flow inside the aligned canopy region are discussed.  相似文献   
7.
实验速度场测量技术及对流边界层特征研究   总被引:3,自引:0,他引:3  
在对流槽中对对流边界层(CBL)温度场实验研究的基础上,进一步尝试通过实验技术测量速度场并分析研究CBL中的速度场特征。在应用PIV测量技术时选用铝粉作示踪粒子。实验证明了在混合层中速度分布明显具有对流边界层热泡特性;混合层顶部的速度分布很好地反应出夹卷层的结构特征;湍流速度特征量的垂直分布合理,与野外实测结果和类似的对流槽实验结果接近;误差分析表明示踪粒子的跟随性良好,粒子速度的测量结果能真实地反应流体的运动特征,从而得证了分析结果的可靠性。  相似文献   
8.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   
9.
油气储层中构造裂缝发育与有限应变状态关系密切,为了探索有限应变分析与构造裂缝预测的新技术方法,此次研究设计完成了一组单侧挤压收敛模型的物理模拟实验,并引入粒子图像测速(PIV,Particle Image Velocimetry)技术对实验过程进行了定量化分析。实验模型在垂向上为含粘性层的多层结构,实验结果形成了一个肉眼可见的箱状褶皱。通过PIV技术可以获取实验模型变形演化过程中各阶段的位移场数据,计算出各阶段的增量应变,实现从初始状态到褶皱形成之后整个变形过程的有限应变分析,探讨构造裂缝成因机制和分布规律,进行定量化裂缝预测。挤压变形过程初期,应变分布范围很广,有限应变较弱(约4%~8%),在挤压方向上的线应变表现为弱压应变,在垂向上的线应变表现为弱张应变,这种现象是褶皱和断层产生前平行层缩短和层增厚的纯剪变形结果,也是区域型张裂缝和剪裂缝形成的主要机制。褶皱和断层即将发育之时至发育之后,应变局限在断层发育的剪切带及附近区域,有限应变表现为较强(达20%)的剪切应变和剪切张应变,是断层面附近简单剪切变形作用的结果,也是局部型剪裂缝和张剪裂缝形成的主要机制。  相似文献   
10.
栅栏绕流减速效应风洞实验模拟   总被引:12,自引:9,他引:3  
为研究阻沙栅栏的空气动力学效应,利用PIV技术对栅栏绕流的速度场进行了风洞实验模拟,并对其减速效应加以分析评价。结果表明,疏透度对栅栏绕流的平均速度场分布影响比较明显,疏透度越小栅栏后的平均水平风速衰减得越快;栅栏绕流的垂直速度分量在栅栏顶部最大,并随疏透度的增大而减小,影响了栅栏周围沙粒的跃移传输及沉积特征;栅栏后的累计减速率可以用高斯峰值函数来拟合,随疏透度的增大呈先增大后减小的趋势,疏透度η=0.2时累计减速率最大,代表了栅栏减速的理论最佳疏透度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号