首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地球物理   5篇
地质学   2篇
海洋学   2篇
自然地理   2篇
  2017年   2篇
  2013年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1988年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Increasing concerns over habitat loss and rising costs of sea defence maintenance due to rising sea levels, has seen increases in the practice of managed realignment and reflooding of former reclaimed areas of intertidal saltmarsh and mudflat around the world. These practices are taking place with little knowledge of their impact on soil biogeochemical processes. Rates of denitrification (using the acetylene inhibition technique) and nitrous oxide (N2O) production were measured from a long-established saltmarsh (SM) and an adjacent, recently re-flooded managed realignment (MR) site comprising former arable land in the estuary of the River Torridge, Devon, UK. Incubations were carried out in closed chambers in which patterns of tidal flooding were simulated automatically. Measurements were made during periods of flood and non-flood over a total of four tidal inundations with estuarine water. During the latter two flooding episodes floodwater was amended with nitrate (NO3). Nitrous oxide production in the SM soil generally was lower than in the MR soil, with mean values and standard errors over the whole incubation of 0.27 ± 0.16 mg N2O-N m−2 h−1 and 0.65 ± 0.15 mg N2O-N m−2 h−1 respectively. Denitrification rates demonstrated a similar trend although generally were an order of magnitude higher than N2O production, with mean rates and standard errors of 2.88 ± 1.12 mg N2O-N m−2 h−1 in the SM soil and 3.39 ± 1.16 mg N2O-N m−2 h−1 in the MR soil. The data suggest that both soils are net sinks for NO3 and net sources for N2O. Both patterns of tidal inundation and floodwater chemistry affect the process rates in each soil differently. The impact of flooding with NO3 – amended water was greater on the SM soil than the MR soil, and it is likely that decomposing vegetation buried in the accreting sediments following reflooding at the MR site were supplying a source of N in the soil, and so process rates were less dependent upon external supplies. The act of managed realignment in intertidal zones could therefore result in an increase in mean production of N2O in intertidal zones, at least in the short term.  相似文献   
2.
This paper presents the first attempt to use environmental magnetism to quantify sediment provenance on a managed realignment (MR) site. MR is one technique for creating/restoring intertidal habitats and improving the standard of coastal flood protection. Monitoring of MR sites is essential for determining how successful they are at achieving these aims, and normally includes measurement of sedimentation rates through the use of accretion plates and sediment erosion tables (SETs). One limitation of this technique is that the provenance of sediment accreting on realigned surfaces cannot readily be quantified. Our results demonstrate that magnetics-based fingerprinting can successfully apportion sediment source contributions to created/restored coastal saltmarshes with an efficiency similar to that of existing un-mixing models applied to other habitats (82.87%). Analysis of mineral magnetic properties (χFD, IRMsoft and SIRM) demonstrated that the majority of sediment accreting on the Freiston Shore MR Site (Lincolnshire, UK) is derived from established saltmarshes seaward of the breached embankment. This indicates that the MR site may be growing at the expense of neighbouring saltmarshes—thereby undermining the habitat-creation objectives used to justify MR. It is recommended that future MR monitoring programmes consider the provenance of post-breach deposits to help identify any adverse impacts that wetland creation/restoration may have on existing habitats. Further testing of environmental magnetism in coastal saltmarshes and MR sites is necessary to validate wider use of the technique.  相似文献   
3.
The stability of cohesive and non-cohesive sediments in a mixed intertidal habitat within the Ria Formosa tidal lagoon, Portugal, was examined during two field campaigns as part of the EU F-ECTS project. The cohesive strength meter Mk III was used to determine critical erosion shear stress (τc) within a variety of different intertidal habitats and substrata, including Spartina maritima fields and Zostera noltii beds. The best predictor(s) for τc were derived from a range of properties measured for the surface sediments (chlorophyll a, colloidal carbohydrate, water, organic content, % fraction <63 μm, and seabed elevation). Pigment biomarkers were used to identify the dominant algal groups within the surface phytobenthic assemblage.Strong, seasonally dependent relationships were found between τc and habitat type, chl a, colloidal carbohydrate and bed elevation. Typically, critical erosion thresholds decreased seawards, reflecting a change from biostabilisation by cyanobacteria in the upper intertidal areas, to biostabilisation by diatoms on the bare substrata of the channel edges. In the late summer/early autumn, cyanobacteria were the main sediment stabilisers, and colloidal carbohydrate was the best bio-dependent predictor of τc across the entire field area. In the late winter/early spring, cyanobacterial activity was lower, and sediment stabilisation by Enteromorpha clathrata was important; the best predictor of τc was bed elevation. The implications and use of proxies for sediment stability are discussed in terms of feedback and sedimentation processes operating across the intertidal area.  相似文献   
4.
Comparisons of maps and aerial photographs dating from the late 1700s to the present document the recent development of an 8 km2 saltmarsh that is situated behind a barrier spit in southern Maine. Tidal channels that were relatively narrow in 1794 became wider by 1872. The reduction of marsh bordering tidal channels is interpreted as evidence that marsh accretion could not keep pace with rising sea-level. This suggests that the rate of sea-level rise had increased, although a change in discharge or sediment load caused by extensive settlement and land clearance may also have been involved. Meander patterns of the tidal streams changed considerably throughout the time period covered by the maps, demonstrating that the streams of this marsh are more dynamic than some others that have been widely reported in the literature. These differences in stream dynamics are probably related to the differences in sedimentological structure of the marshes. Between 1872 and 1956 the barrier spit eroded on its inside (shoreward) edge, probably in response to the construction of riprapping and houses along the spit, and the subsequent reduction of overwash and aeolian transport of sediment. Modification of the tidal inlet and adjacent marsh during the 1960s, including jetty construction, dredging, and filling of portions of the marsh surface, affected the marsh only locally. One tidal stream has been migrating rapidly apparently in response to compaction of peat by dredge spoils and consequent local disruption of the marsh hydrology. Except for this migration, erosion of the marsh edge occurred immediately after the inlet modifications; planimetric changes in the marsh and its streams have been minor since then.  相似文献   
5.
The major aim of this study was to evaluate the capacity of Salicornia ramosissima on Cadmium phytoremediation under distinct salinities and, consequently, the toxic effects on the plant's development. A greenhouse experiment was performed, using two Cd concentrations (50 and 100 μg l−1) in different salinities (0, 5 and 10). Mortality and weight variation, observed at the end of the experiment, showed significant differences between some treatments, meaning that these variables were affected by the salinity and Cd concentrations. The highest Cd accumulation was detected in the roots, and decreased with the increase of salinity and Cd concentration. S. ramosissima is a potential candidate for Cd phytoremediation at salinities close to 0 and its capabilities in Cd phytoaccumulation and phytoestabilization proved to be quite interesting. The optimization of phytoremediation processes by S. ramosissima could turn possible the use of this plant in the recovery of contaminated ecosystems.  相似文献   
6.
As an important carbon pool and fragile eco-system of earth system, more and more coastal saltmarshes have been reclaimed for releasing population pressure and promoting food safety and economic development, especially in developing countries. During reclamation, original soil carbon cycling pattern and pathway in saltmarshs would be changed, which furthermore could change global carbon budget. In this study, a great amounts of literature and data were summerized to generalize the changes of soil organic carbon, carbon sequestration rate and carbon flux in three main kinds of saltmarshes (Mangrove saltmarsh, Estuary saltmarsh and coastal saltmarsh) during reclamation. The results are as shown: ①The conclusions collected from Europe and America are not suitable to eastern Asia’s coast and more attention should be paid to eastern Asia’s coastal reclamation; ②Mangrove saltmarshes have higher Soil Organic Carbon (SOC) and carbon sequestration rate, followed by estuary saltmarshes and coastal saltmarshes. Soil clay, aggregate, burial rate usually have positive effect on SOC sequestration in coastal areas. Flood frequency, salinity and underground water level generally have negative effect on it. After reclamation, coastal SOC first shows a decrease followed by an increase. Nearly 30 years of reclamation is the turning point where paddy fields can significantly promote SOC; ③CH4 and CO2 are the main ways of carbon emission in coastal areas of which CO2 flux usually is the largest. Mangrove saltmarshes’ carbon emissions are the highest. In natural sites, the carbon emissions in Spartina alterniflora Loisel. and Phragmites australis are higher than those in bare flat areas. Carbon fluxes in flood tide usually are lower than those in other periods. Otherwise, carbon fluxes in natural saltmarshes are far lower than those in reclamation zones, especially upland tillage zones. The results acquired from field monitoring, saltmarshes are the carbon sinks and become the carbon sources when reclamation activities happen. Finally, three main aspects of coastal study were given as follows: much more attention should be paid to carbon budget inventory in saltmarshes; the effect of reclamation activity (i.e., anthropogenic activity, tillage practice, land use, etc.) on carbon cycling in ocean-inland system; the study of land use and reclamation process simulation and its impact on carbon cycling in coastal zone should be strengthened.  相似文献   
7.
Proxy-based sea-level reconstructions place the instrumentally observed rates of recent sea-level rise in a longer term context by providing data that extend the instrumental sea-level record into past centuries. This paper presents the first sea-level reconstructions based on analyses of testate amoebae, to test their ability to produce high-precision reconstructions of past sea level. We present two reconstructions for the past 100 yr from sites in Maine (USA) and Nova Scotia (Canada) based on short cores from salt marshes, and modern training data from North America and the United Kingdom. These are compared with tide-gauge records and reconstructions based on foraminifera from the same cores. The reconstructions show good agreement with both the tide-gauge data and the foraminifera-based reconstructions. The UK data perform well in predicting known elevations of North American surface samples and produce sea-level reconstructions very similar to those based on the North American data, suggesting the methodology is robust across large geographical areas. We conclude that testate amoebae have the potential to provide robust, higher precision sea-level reconstructions for the past few centuries if modern transfer functions are improved and core sites are located within the main zone of testate amoebae occurrence on the salt marsh.  相似文献   
8.
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.  相似文献   
9.
10.
There is increasing interest in tidal wetlands as mechanisms for sustainable and long-term coastal defence. The complexities of the interaction between the deposition of suspended particulate matter (SPM) and submerged vegetation, however, is to a large extent poorly understood. Consequently, accurate parameterisation of cohesive sediment settling fluxes in these environments is a crucial requirement for the development of high-resolution numerical models of wetland morphodynamics. A novel laboratory experiment is described in which the turbulent flow structure within a canopy of the halophytic macrophyte Spartina anglica is examined, and floc characteristics quantified using a unique floc camera configuration able to measure directly the full spectral floc size (D) and settling velocity (Ws). We provide the first quantitative observations of floc characteristics from shallow (h<0.5 m), vegetated flows and investigate the potential influence that variations in vegetative density may have on flocculation, and thus depositional fluxes, in comparison to unvegetated flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号