首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   38篇
  国内免费   11篇
大气科学   12篇
地球物理   25篇
地质学   16篇
海洋学   130篇
自然地理   2篇
  2024年   1篇
  2023年   2篇
  2022年   15篇
  2021年   10篇
  2020年   13篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   15篇
  2015年   18篇
  2014年   10篇
  2013年   3篇
  2012年   6篇
  2011年   13篇
  2010年   6篇
  2009年   6篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
基于UDF的水平轴潮流能水轮机被动旋转水动力性能研究   总被引:1,自引:1,他引:0  
针对水平轴潮流能水轮机被动旋转问题,基于Fluent 17.0,运用UDF(User Defined Function)控制滑移网格对网格进行动态调整,仿真研究水轮机在不同安放角下被动旋转的水动力特性。通过仿真分析,结果表明:潮流能水轮机随着叶片安放角度的增加,尖速比、输出功率、捕能系数都是先增大后减小,叶片安放角为6°时,叶轮前后速度差最大,对潮流能利用充分,且各项性能均达到最佳;通过分析叶片受力,叶尖叶素在安放角为2°时阻力最大,3°时升力最大,升阻比在6°时最大,此时叶尖叶素升阻比C_L/C_D=6.27、攻角α=3.06°。由仿真结果可知水平轴潮流能叶轮的自启动过程由5个阶段组成,即加速度增大的加速运动段—加速度减小的加速运动段—加速度反向增大的减速运动段—加速度反向减小的减速运动段—稳定运行段,这对潮流能水轮机的设计具有重要的指导意义。  相似文献   
2.
Floating wind turbine has been the highlight in offshore wind industry lately. There has been great effort on developing highly sophisticated numerical model to better understand its hydrodynamic behaviour. A engineering-practical method to study the nonlinear wave effects on floating wind turbine has been recently developed. Based on the method established, the focus of this paper is to quantify the wave nonlinearity effect due to nonlinear wave kinematics by comparing the structural responses of floating wind turbine when exposed to irregular linear Airy wave and fully nonlinear wave. Critical responses and fatigue damage are studied in operational conditions and short-term extreme values are predicted in extreme conditions respectively. In the operational condition, wind effects are dominating the mean value and standard deviation of most responses except floater heave motion. The fatigue damage at the tower base is dominated by wind effects. The fatigue damage for the mooring line is more influenced by wind effects for conditions with small wave and wave effects for conditions with large wave. The wave nonlinearity effect becomes significant for surge and mooring line tension for large waves while floater heave, pitch motion, tower base bending moment and pontoon axial force are less sensitive to the nonlinear wave effect. In the extreme condition, linear wave theory underestimates wave elevation, floater surge motion and mooring line tension compared with fully nonlinear wave theory while quite close results are predicted for other responses.  相似文献   
3.
The worldwide demand for renewable energy is increasing rapidly. Wind energy appears as a good solution to copy with the energy shortage situation. In recent years, offshore wind energy has become an attractive option due to the increasing development of the multitudinous offshore wind turbines. Because of the unstable vibration for the barge-type offshore wind turbine in various maritime conditions, an ameliorative method incorporating a tuned mass damper (TMD) in offshore wind turbine platform is proposed to demonstrate the improvement of the structural dynamic performance in this investigation. The Lagrange's equations are applied to establish a limited degree-of-freedom (DOF) mathematical model for the barge-type offshore wind turbine. The objective function is defined as the suppression rate of the standard deviation for the tower top deflection due to the fact that the tower top deflection is essential to the tower bottom fatigue loads, then frequency tuning method and genetic algorithm (GA) are employed respectively to obtain the globally optimum TMD design parameters using this objective function. Numerical simulations based on FAST have been carried out in typical load cases in order to evaluate the effect of the passive control system. The need to prevent the platform mass increasing obviously has become apparent due to the installation of a heavy TMD in the barge-type platform. In this case, partial ballast is substituted for the equal mass of the tuned mass damper, and then the vibration mitigation is simulated in five typical load cases. The results show that the passive control can improve the dynamic responses of the barge-type wind turbine by placing a TMD in the floating platform. Through replacing partial ballast with a uniform mass of the tuned mass damper, a significant reduction of the dynamic response is also observed in simulation results for the barge-type floating structure.  相似文献   
4.
近年轴流转桨式机组水电站进水口事故闸门有两种布置方式,一门一机布置和多门一机布置.本文结合轴流转桨式机组特性,阐述防止机组飞逸的保护措施.然后通过两种布置方式的优缺点比较,建议采用一门一机的方式.  相似文献   
5.
水平轴潮流能叶轮尖速比特性分析研究   总被引:1,自引:1,他引:0  
王兵振  廖微  张巍 《海洋工程》2015,33(6):100-105
针对设计尖速比对水平轴潮流能叶轮动力特性的影响问题开展研究工作。基于叶素-动量理论建立叶轮动力特性仿真模型,以叶片数量分别为2、3、4的叶轮为对象,考察设计尖速比对叶轮的功率系数的影响。研究结果表明:设计尖速比越大的叶轮,其最大效率也越高;叶片数量多的叶轮,其功率系数略优于叶片数量少的叶片。结合分析结果,给出了水平轴潮流能叶轮的设计尖速比的选择建议。  相似文献   
6.
考虑发电机尾流作用的潮流能理论可开发量的评估   总被引:1,自引:1,他引:0  
In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model(FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.  相似文献   
7.
Suction buckets differ with their easy and cost-efficient installation technique from other foundation types for offshore wind turbines. For successful completion of their installation process, suction is essential, but the imposed seepage leads to the changes in states of the soil in and around the bucket. Especially, a loosening of soil inside the bucket affects the load carrying behaviour of bucket subjected to repetitive loading resulting from environmental conditions. In this study, the behaviour of buckets under cyclic axial compressive loads with considering a possible loosening and related changes in permeability of soil inside the bucket is investigated numerically. In the framework of finite element analysis, a fully coupled two-phase model and a hypoplastic constitutive model are used to describe the saturated sandy soil behaviour under repetitive loading. The porosity-permeability variation is taken into account by Kozeny–Carman relationship. Special attention is dedicated to load carrying behaviour of bucket top plate, inner and outer skirt as well as base and their changes resulting from a loosening of soil inside the bucket with variable aspect ratio. For this purpose, cyclic axial compressive loads which cause an attenuation and progressive failure of soil-bucket system response are considered. The main findings on the changes in load carrying behaviour of bucket are presented and discussed.  相似文献   
8.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   
9.
The paper presents the effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines using both analytical and numerical methods. Firstly, in the hydrodynamic design procedure, the optimal profiles of untwisted and twisted blades and their predicted theoretical turbine performance are obtained using the genetic algorithm method. Although both blade profiles produce desired rated rotational speed, the twisted blade achieves higher power and thrust performance. Secondly, numerical simulation is performed using sliding mesh technique to mimic rotating turbine in ANSYS FLUENT to validate the analytical results. The Reynolds-Averaged Navier-Stokes (RANS) approximation of the turbulence parameters is applied to obtain the flow field around the turbine. It is found that power and axial thrust force from BEMT (Blade Element Momentum Theory) method are under-predicted by 2% and 8% respectively, compared with numerical results. Afterwards, the downstream wake field of the turbine is investigated with two different nacelle shapes. It is found that the rotor performance is not significantly affected by the different nacelle shapes. However, the structural turbulence caused by the conventional nacelle is stronger than that by the NACA-profiled shape, and the former can cause detrimental effect on the performance of the downstream turbines in tidal farms.  相似文献   
10.
The construction of large offshore wind turbines in seismic active regions has great demand on the design of foundations. The occurrence of soil liquefaction under seismic motion will affect the stability of the foundations and consequently the operation of the turbines. In this study, a group of earthquake centrifuge tests was performed on wind turbine models with gravity and monopile foundations, respectively, to exam their seismic response. It was found that the seismic behavior of models was quite different in the dry or saturated conditions. Each type of foundation exhibited distinct response to the earthquake loading, especially in the offshore environment. In the supplementary tests, several remediation methods were evaluated in order to mitigate the relatively large lateral displacement of pile foundation (by fixed-end pile and multi-pile foundation) and excessive settlement of gravity foundation (by densification, stone column, and cementation techniques).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号