首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   3篇
  海洋学   10篇
  2020年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 94 毫秒
1
1.
以固相萃取/气相色谱法测定了莱州湾海域水体中22种有机氯农药和多氯联苯类化合物的浓度水平和分布特征。结果表明,莱州湾海域表层水体中有机氯农药浓度范围为N.D.~32.7ng/L,底层水中的浓度范围为N.D.~11.7ng/L。在该海域水体中共检出有机氯农药3种,β-666是水体中主要的有机氯农药污染物。多氯联苯类在底层水样中检出2种,总浓度范围在4.5~27.7ng/L之间。该海域有机氯农药和多氯联苯的分布特征是近岸高,离岸低,由近岸向湾外延伸方向依次递减。并对莱州湾表层水中总有机氯农药与海水盐度、氯度、溶解氧和pH间的关系作了初步探讨,得出总有机氯农药与盐度、氯度间有一定的相关关系,相关系数均为0.59。方法测定5种有机氯农药化合物的空白加标回收率为97.3%~126.0%,相对标准偏差为2.8%~8.6%;测定5种多氯联苯类化合物的空白加标回收率为88.6%~151.8%,相对标准偏差为6.7%~10.4%。  相似文献
2.
为实现麻痹性贝类毒素(paralytic shellfish poisoning,PSP)的实时监控与提前预警,本研究构建了基于固相萃取技术(solid phase extraction,SPE)与固相吸附毒素跟踪技术(solid phase adsorption toxin tracking,SPATT)的水体中PSP检测方法,重点优化了吸附材料及前处理方法,评价了回收率、检出限等指标,并将方法应用于2019年春季秦皇岛山海关海域PSP消长过程的监测中,比较评估了两种方法的监控预警效果。结果表明:SPE方法选用ENVI-Carb 500mg/6mL固相萃取柱,过样体积为50mL,13种PSP组分的平均回收率为82.2%±10.0%、检出限为4.0-20.0ng/L;SPATT方法选用SP207大孔吸附树脂,洗脱时间为静置Id最佳,整体回收率约为9.2%;在实际应用中,结合产毒藻密度及贻贝富集毒素含量的变化,发现SPE方法的检测结果可实时表征海域PSP风险状况,对于贻贝中PSP的预警效果也显著优于SAPTT方法,后者不仅因监控方式相对滞后一个监测周期,且灵敏度及准确性均较差。对于秦皇岛海域,当SPE方法检测结果达到100ng STX eq/L时,该海域贻贝中PSP残留将具有潜在的食用安全风险,跟踪过程表明这一阈值可提前两周预警贻贝富集毒素含量超出我国限量标准(800μg STX eq/kg),这对于强化风险警示并制定防范措施具有积极作用。  相似文献
3.
A new method for the direct determination of reduced and oxidized Mo species (Mo (V) and Mo (VI)) in seawater was developed and used for the first time. The method includes the complexation of Mo (V) with tartrate, solid phase extraction of the Mo (V)–tartrate complex by a XAD 7HP resin, followed by elution with acidic acetone. In this study, the eluted Mo (V) was quantified by graphite furnace atomic absorption spectrometry. The detection limit of this protocol was on the order of 0.2 nM. The analytical precision was 10% of ~ 10 nM. This method was successfully applied to the determination of Mo (V) and Mo (VI) in surface and bottom waters at the head of Peconic River Estuary. Total Mo (Mo (V) + Mo (VI)) ranged from 100–120 nM in most bottom saline waters, and 2.5–15 nM for surface fresher waters. Concentrations of Mo (V) in these environments ranged from 0 nM to ~ 15 nM, accounting for 0%–15% of the total dissolved Mo pool. The time series experiments showed that the Mo speciation changed within 1 h after the water collection, and therefore it is strongly suggested that speciation analysis be carried out within the first 15 min. However, since these are the first Mo speciation data in concentration ranges typical of normal marine and coastal waters, additional research may be required to optimize the methodology and further explore Mo cycling mechanisms.  相似文献
4.
建立了用固相萃取-高效液相色谱-荧光检测法测定海水中多环芳烃的方法,优化了色谱条件和萃取条件。除苊不能用荧光检测器检出外,其余15种多环芳烃的空白加标回收率在64.5%(苯并[g,h,i],茚并[1,2,3-cd]芘)~88.7%(苯并[a]蒽)之间,相对标准偏差(n=5)为4.9%(荧蒽,苯并[b]荧蒽)~11.1%(苯并[g,h,i],茚并[1,2,3-cd]芘),方法的检出限在0.72(蒽)~14.10 ng/L(荧蒽)之间,基本上达到了痕量分析的要求。利用该方法测得青岛湾表层海水中多环芳烃的浓度在0.125(苯并[k]荧蒽)~25.996 ng/L(萘)之间,但苯并[a]芘未检出。  相似文献
5.
In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) is utilized to molecularly characterize DOM as it is transported along a river to estuary to ocean transect of the lower Chesapeake Bay system. The ultrahigh resolving power (greater than 500,000) and mass accuracy of FTICR-MS allow for the resolution of the thousands of components in a single DOM sample, and can therefore elucidate the molecular-level changes that occur during DOM transformation from a terrestrial location to the marine environment. An important feature of FTICR-MS is that its sensitivity allows for direct analysis of low salinity samples without employing the traditional concentration approaches involving C18 extraction or ultrafiltration. To evaluate the advantages of using direct analysis, a C18 extract of riverine water is compared to its whole, unfractionated water, and it was determined that the C18 extraction is selective in that it eliminates two major series of compounds. One group is aliphatic amines/amides that are not adsorbed to the C18 disk because they exist as positive ions prior to extraction. The second group is tannin-like compounds with higher oxygen contents and a more polar quality that also allow them not to be adsorbed to the C18 disk. This direct approach could not be used for brackish/saline waters, so the C18 method is resorted to for those samples. Along the subject transect, a significant difference is observed in the molecular composition of DOM, as determined from assigned molecular formulas. The DOM tends to become more aliphatic and contain lower abundances of oxygen-rich molecules as one progresses from inshore to the offshore. A considerable amount of molecular formula overlap does exist between samples from sites along the transect. This can be explained as either the presence of refractory material that persists throughout the transect, due to its resistance to degradation, or that the assigned molecular formulas are the same but the chemical structures are different. ESI-FTICR-MS is a powerful technique for the investigation of DOM and has the ability to detect compositional variations along the river to ocean transect. Visualization tools such as two dimensional and three dimensional van Krevelen diagrams greatly assist in highlighting the shift from the more aromatic, terrestrial DOM to the more aliphatic, marine DOM.  相似文献
6.
Jian Ma  Dongxing Yuan  Ying Liang   《Marine Chemistry》2008,111(3-4):151-159
A cartridge of solid phase extraction (SPE), hydrophilic–lipophilic balance (HLB), has been used to enrich phosphomolybdenum blue (PMB) from water samples without any other additives. Based on this, the previous on-line SPE method established for the determination of nanomolar soluble reactive phosphorus (SRP) in seawater has been greatly improved. Cetyltrimethylammonium bromide (CTAB), the cationic surfactant needed for the formation of the PMB-CTAB paired compound that could be extracted on a Sep-Pak C18 cartridge using the previous method [Liang, Y., Yuan, D.X., Li, Q.L., Lin, Q.M., 2007. Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection. Marine Chemistry 103, 122–130.], was not necessary. Thus the longer time and higher temperature required for the complete formation of the PMB-CTAB compound were no longer needed. In addition, with application of the sequential injection analysis technique the proposed method showed the advantages of being much faster, simpler, sample and reagent saving, as well as more convenient in operation. The PMB compound formed under room temperature was efficiently extracted on an in-line HLB cartridge, rapidly eluted by 0.15 mol/L NaOH solution, and finally determined with a laboratory-made spectrophotometer at 740 nm. Experimental parameters, including the volume of reagents added, sample loading flow rate, and eluting flow rate, were optimized. Time and temperature for the PMB reaction, and salinity effect were also studied, and these were found to have no severe effect on the detection. With variation of sample loading time at a fixed flow rate, a broadened determination range of 3.4 to 1134 nmol/L phosphate could be obtained. The recovery and the method detection limit of the proposed method were found to be 94.4% and 1.4 nmol/L, respectively. The relative standard deviation (n = 7) was 2.50% for the sample at a concentration of 31 nmol/L phosphate. Two typical seawater samples were analyzed with both the proposed method and the magnesium hydroxide-induced coprecipitation method and, using the t-test, the results of the two methods showed no significant difference.  相似文献
7.
A method for the determination of nanomolar concentrations of orthophosphate in oligotrophic seawater developed by Liang et al. (2007) has been modified to make it fully feasible for shipboard application and for faster sample throughput with minimized sample volume. The technique is based on the flow injection method with solid phase extraction on a Sep-Pak C18 cartridge and colorimetric detector. The Schlieren effect was minimized by rinsing the cartridge sequentially with 5 mL water and 2 mL 95% ethanol solution. With three micro pumps in parallel, savings of up to 80% in amount of reagents and 25% volume of seawater samples could be achieved in comparison to the previous method. Variation of stopped flow time and sample loading time gave 3 different standard curves, which corresponded to 3 linear ranges within 3.4 and 515 nM. The modified method permits the analysis of samples over a wide range of concentrations, and has been successfully applied to shipboard determination of trace orthophosphate in more than 200 seawater samples during a one-month cruise in the South China Sea. For seawater at concentrations of 20.6, 82.5, 206.2 nM orthophosphate, the relative standard deviations (RSD) (n = 6), determined daily for 6 days on board ship were 4.45%, 4.73% and 6.75%, respectively. Five seawater samples collected in the Station SEATS (South East Asia Time Series Station at 18°N, 116°E) were analyzed using the present method both on board and in a land-based laboratory, as well as with the magnesium hydroxide-induced coprecipitation (MAGIC) method, and showed no significant difference according to the statistical t-test.  相似文献
8.
A method has been developed for determination of15N isotope ratio in nitrate nitrogen, which is a major analytical step in tracer experiments for studies of nitrate metabolism in the marine environment. The method is based on diazotization of nitrite with sulfanilic acid following reduction of nitrate to nitrite by a cadmium-copper column. The diazonium compound is then subject to the azo coupling reaction with 2-naphthol, and the azo dye formed is extracted by a solid phase extraction column. The dye eluted from the column is collected, and total nitrogen and15N content of the dye are determined by mass spectrometry. Sulfanilic acid can also remove preexisting nitrite by heating the sample under acidic conditions before passing through the cadmium-copper reduction column. The average recovery of nitrate nitrogen was 86%. A procedure for reducing the background nitrogen that derives from the analytical operations has been developed; background nitrogen was limited to about 0.25 μg-atomN. The variation in the background nitrogen levels reflects the range of error in15N determination of nitrate nitrogen by this method. Application of the present method to a15NO3 isotope dilution experiment for determination of nitrification rate in sea water is demonstrated.  相似文献
9.
The unstable state of nitrite results in its very low concentration in seawater, which is below the limit of detection (LOD) of conventional techniques of analysis. Some sensitivity-enhanced methods have been proposed for the determination of nitrite at nanomolar level to illustrate the role of nitrite in the marine nitrogen cycle. However, most of previous reports are not widely accepted, because of their complexity and cost equipment or intensive labor requirement. In this study, a simple automatic system for the determination of nanomolar level nitrite using on-line preconcentration with spectrophotometric detection was described. An Oasis HLB cartridge was adopted to quantitatively enrich the pink-colored azo compound, formed from nitrite via Griess reaction. The cartridge was rinsed with water and ethanol (volume fraction is 55%, the same below), in turn, then eluted by an eluent containing 50% ethanol and 0.25 M(mol/dm3) H2SO4, and determined at 543 nm with a 2 cm path-length flow cell. Under the optimized experimental conditions, the calibration curve showed a good linearity in the range of 1.4-85.7 nM, and the LOD (3σ) was estimated to be 0.5 nM. The relative standard deviations of 7 measurements were 4.0% and 1.0% for the samples spiked at 7.1 and 28.6 nM, respectively. The recoveries for the different natural water samples were between 92.2%-108.4%. Each HLB cartridge could be reused for at least 50 times. As compared with other SPE methods, the advantages of this method included the free of interference from salinity variation and less sample consuming. The results of the application of the proposed method to natural water showed good agreement with liquid waveguide capillary cell detection method.  相似文献
10.
采用固相萃取和液相色谱串联质谱(HPLC-MS/MS)分析方法对闽江河口区域沉积物中8类54种抗生素的含量以及分布特征进行分析探讨,并利用熵值法对抗生素的生态风险进行评价。结果表明,闽江河口区域24个站点共检出6类(大环内酯类、磺胺类、喹诺酮类、氯霉素类、硝基咪唑类和苯并咪唑类) 19种抗生素,总量范围在4. 16~64. 74 ng/g,平均值为17. 35 ng/g;其中大环内酯类、喹诺酮类和硝基咪唑类抗生素检出频率达到100%。抗生素总量的空间分布情况呈闽江河口上游北港南港河口下游的趋势,人口密集区生活污水和医疗废水排放是上游和北港沉积物大环内脂类和喹诺酮类抗生素含量较高的主要原因,而海水养殖过程中的直接投放可能是河口下游硝基咪唑类抗生素的主要来源;生态风险评价结果显示,大部分抗生素的生态风险值RQ 1,然而替米考星和甲硝唑在研究区域的RQ 1,具有一定的潜在风险,可能会对该区域生态环境产生负面效应。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号