首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  国内免费   5篇
  完全免费   2篇
  海洋学   79篇
  2018年   6篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   8篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
2.
南沙海域万安盆地地质构造特征   总被引:3,自引:3,他引:0  
利用在南沙海域万安盆地所采集的地震、重磁资料及钻井、地质资料,对该盆地的地震反向特征,沉积特征、区域地质、构造特征及构造发展史进行了的简要的论述,本文以该区Tg深度资料为基础,并利用CCOP年刊发表的新生代基底深度资料,初步圈定了万安盆地的边界,并对盆地二级构造单元进行了划分,将盆地划分为5坳3隆、坳隆相间的构造格局。  相似文献
3.
Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cabbeling and elasticity(compressibility), are discussed. Eddy diffusion and advection lead to changes in density; as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward; thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. Using WOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2×103 Pa2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.  相似文献
4.
卤水体积和应力速率影响下海冰强度的统一表征   总被引:1,自引:1,他引:0  
无论在地球物理尺度下研究海冰的动力学演化特性,还是在工程结构尺度下分析海冰与海洋结构物的相互作用过程,海冰强度均是影响海冰宏观变形和细观破坏规律的重要力学参数。本文通过对渤海海冰物理力学性质的现场和室内试验,分析了海冰压缩、弯曲和剪切强度参数与卤水体积、应力速率的对应关系。试验结果表明,海冰强度与卤水体积更好地呈指数关系,与应力速率呈线性关系;在此基础上,本文建立了由卤水体积和应力速率共同表征的海冰强度统一函数关系,为工程领域对海冰强度的选取提供有力的参考依据。  相似文献
5.
6.
A boundary integral equation method (BIEM) model and three differently formulated finite element method (FEM) models were implemented to explore the spatial and temporal patterns in marsh pore water seepage that each generated. The BIEM model is based on the Laplace equation coupled to a dynamic free-surface condition that assumes that, as the water-table changes, the aquifer instantaneously loses or gains an amount of water equal to the change in head times the specific yield. The FEM models all implement a simplified Richards equation that allows gradual desaturation or resaturation and thus flow in both the saturated and unsaturated zones of the aquifer. Two of the FEM models are based on the governing equation for the USGS model SUTRA and thus take into account fluid and aquifer compressibility. One of these was modified to take into account the effect of tidal loading on the total stress, which is assumed to be constant in the derivation of the original version of SUTRA. The third FEM model assumes that neither the fluid or aquifer matrix is compressible so that changes in storage are due solely to changes in saturation. The unmodified SUTRA model generated instantaneous boundary fluxes that were up to two orders of magnitude greater, and spatially more uniform, than those of the other models. The FEM model without compressibility generated spatial and temporal patterns of the boundary fluxes very similar to those produced by the BIEM model. The SUTRA model with the tidal stress modification gave fluxes similar in magnitude to the BIEM and no compressibility models but with distinctly different distributions in space and time. These results indicate that accurate simulation of seepage from marsh soils is highly sensitive to aquifer compressibility and to proper formulation of the effect of tidal loading on the total stress in the aquifer. They also suggest that accurate simulation may require total stress correction not only for tidal loading but for changes in the water table as well. Finally, to aid the development of methods for the measurement of compressibility, we present a schematic, pore-scale model to illustrate the factors that may govern the compressibility of marsh soils.  相似文献
7.
A postbuckling analysis is presented for a shear deformable anisotropic laminated cylindrical shell with stiffener of finite length subjected to axial compression. The material of each layer of the shell is assumed to be linearly elastic, anisotropic and fiber-reinforced. The governing equations are based on a higher order shear deformation shell theory with von Kármán-Donnell-type of kinematic nonlinearity and including the extension/twist, extension/flexural and flexural/twist couplings. The ‘smeared stiffener’ approach is adopted for the beam stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, grid, axial, ring stiffened, and unstiffened shells. The results confirm that there exists a compressive stress along with an associate shear stress and twisting when the anisotropic shell is subjected to axial compression. The postbuckling equilibrium path is unstable for the moderately thick cylindrical shell under axial compression and the stiffened shell structure is imperfection-sensitive.  相似文献
8.
The slightly compressible flow formulation is applied to the free-surface, three-dimensional turbulent flow around a Wigley hull. Two turbulence models (large eddy simulation and Baldwin–Lomax) are used and compared. The simulation conditions are the ones for which experimental and numerical results exist. The computational grid is built using an algebraic grid generator with the model fixed in space. The codes use the interface-capturing technique for computing the free-surface displacements and the Beam and Warming scheme for marching in time the numerical model. The results compare well with the experimental data available.  相似文献
9.
The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.  相似文献
10.
A series of parametric sensitivity studies on unmatched dimensionless scale parameters is carried out on the liquified natural gas (LNG) tank sloshing loads by using a computational fluid dynamics (CFD) program. First, a brief dimensional analysis is conducted to identify the governing and non-matched non-dimensional parameters, assuming that Froude scaling law is adopted. Then the sensitivity of impact pressure is checked through numerical simulations against non-matched parameters, such as fluid viscosity, liquid-gas density ratio, and ullage pressure and compressibility. The CFD simulations are also verified against experimental results. It is concluded that the effects of viscosity and density ratio are insignificant, while the compressibility of ullage space plays an appreciable role, as was pointed out by Bass et al. [Bass, R.L., Bowles, E.B., Trudell, R.W., Navickas, J., Peck, J.C., Yoshimura, N., Endo, S., Pots, B.F.M., 1985. Modeling criteria for scaled LNG sloshing experiments. Transactions of the ASME 107, 272-280].  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号