首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4440篇
  免费   1007篇
  国内免费   728篇
测绘学   149篇
大气科学   24篇
地球物理   1698篇
地质学   3581篇
海洋学   137篇
天文学   5篇
综合类   225篇
自然地理   356篇
  2024年   8篇
  2023年   24篇
  2022年   118篇
  2021年   192篇
  2020年   179篇
  2019年   193篇
  2018年   201篇
  2017年   179篇
  2016年   184篇
  2015年   212篇
  2014年   311篇
  2013年   377篇
  2012年   277篇
  2011年   280篇
  2010年   295篇
  2009年   276篇
  2008年   322篇
  2007年   341篇
  2006年   370篇
  2005年   293篇
  2004年   241篇
  2003年   203篇
  2002年   157篇
  2001年   155篇
  2000年   133篇
  1999年   142篇
  1998年   117篇
  1997年   68篇
  1996年   68篇
  1995年   71篇
  1994年   32篇
  1993年   34篇
  1992年   28篇
  1991年   20篇
  1990年   15篇
  1989年   9篇
  1988年   16篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有6175条查询结果,搜索用时 15 毫秒
1.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
2.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
3.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   
4.
Throughout history, dry-stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.  相似文献   
5.
地下水是张掖盆地的重要水资源,其硝酸盐污染尚未得到足够重视。对张掖盆地2004、2015年地下水硝酸盐浓度进行了系统分析,并采用美国环境保护署(USEPA)推荐的健康风险评价模型评估了地下水硝酸盐的健康风险。结果表明:自2004年以来张掖盆地地下水硝酸盐污染日趋严重。2015年硝酸盐浓度最高已达到283.32 mg·L-1,17.61%的采样点硝酸盐氮浓度超过GB5749-2006《生活饮用水卫生标准》中饮用地下水限量值(20 mg·L-1)。研究区人群经皮肤接触途径摄入硝酸盐的健康风险在可接受水平,而饮水摄入硝酸盐的健康风险较高,总风险中饮水途径引起健康风险的贡献率占99.40%,远大于皮肤接触途径。儿童经饮水摄入和皮肤接触两种途径的健康风险均显著高于成人,分别为成人的1.544倍和1.039倍。32.39%的采样点地下水硝酸盐对儿童的健康风险超出了可接受水平,14.79%的采样点地下水硝酸盐对成人的健康风险不可接受。甘州区城区、临泽县北部边缘及高台县城区周围硝酸盐浓度最高,这些区域内所有人群都面临硝酸盐引发的高健康风险,其余区域硝酸盐引发的健康风险相对较低。  相似文献   
6.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
7.
不同厚度饱和砂土中群桩结构动力响应试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
液化土中桩基础动力响应规律一直是工程抗震领域关注的热点问题。本文基于非液化砂土和不同厚度饱和砂土中的2×2群桩结构模型振动台试验,通过输入一定峰值加速度和频率的正弦波,对群桩在非液化土层和两种不同厚度饱和砂土层中的横向动力响应特性进行振动台试验研究。研究结果表明:在正弦波输入情况下,非液化砂土中群桩承台加速度和位移时程与台面输入时程相比,波形变化规律与峰值大小均相差不大;而对两种不同厚度饱和砂土中承台加速度和位移峰值放大较多,在相对较薄的饱和砂土中群桩承台加速度峰值较台面输入放大了1.83倍,较台面输出位移峰值放大了1.58倍;在相对较厚的饱和砂土中承台加速度和位移峰值则分别放大了2.18倍和1.91倍,说明在相同输入条件下,较厚的饱和砂土在发生液化后群桩承台的动力响应更加显著。  相似文献   
8.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
9.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
10.
Dynamic substructuring refers to physical testing with computational models in the loop. This paper presents a new strategy for such testing. The key feature of this strategy is that it decouples the substructuring controller from the physical subsystem. Unlike conventional approaches, it does not explicitly include a tracking controller. Consequently, the design and implementation of the substructuring controls are greatly simplified. This paper motivates the strategy and discusses the main concept along with details of the substructuring control design. The focus is on configurations that use shake tables and active mass drivers. An extensive experimental assessment of the new strategy is presented in a companion paper, where the influence of various factors such as virtual subsystem dynamics, control gains, and nonlinearities is investigated, and it is shown that robustly stable and accurate substructuring is achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号