首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   10篇
  国内免费   12篇
地球物理   8篇
地质学   21篇
海洋学   18篇
综合类   4篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1986年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   
3.
How dissolved organic matter (DOM) undergoes chemical changes during its transit from river to ocean remains a challenge due to its complex structure. In this study, DOM along a river transect from black waters to marine waters is characterized using an offline combination of reversed-phase high performance liquid chromatography (RP-HPLC) coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), as well as tandem ESI-FTICR-MS. In addition, a water extract from degraded wood that mainly consists of lignins is used for comparison to the DOM from this transect. The HPLC chromatograms of all DOM samples and the wood extract show two major well-separated components; one is hydrophilic and the other is hydrophobic, based on their elution order from the C18 column. From the FTICR-MS analysis of the HPLC fractions, the hydrophilic components mainly contain low molecular weight compounds (less than 400 Da), while the hydrophobic fractions contain the vast majority of compounds of the bulk C18 extracted DOM. The wood extract and the DOM samples from the transect of black waters to coastal marine waters show strikingly similar HPLC chromatograms, and the FTICR-MS analysis further indicates that a large fraction of molecular formulas from these samples are the same, existing as lignin-like compounds. Tandem mass spectrometry experiments show that several representative molecules from the lignin-like compounds have similar functional group losses and fragmentation patterns, consistent with modified lignin structural entities in the wood extract and these DOM samples. Taken together, these data suggest that lignin-derived compounds may survive the transit from the river to the coastal ocean and can accumulate there because of their refractory nature.  相似文献   
4.
Sea lochs are zones of rapid organic matter (OM) turnover. Most of this OM is of allochthonous origin, being introduced into the lochs via freshwater input. In this study the behaviour of terrestrially derived OM was elucidated using a combination of parameters which indicate OM diagenesis in the near surface sediments from two Scottish sea lochs, Loch Creran and Loch Etive. Alkaline CuO oxidation was used to determine lignin phenols which serve as biomarkers for terrestrial OM in sediments. Stable carbon isotope, total carbon and nitrogen and total OM (including the labile and refractory fractions) compositions were also determined.  相似文献   
5.
In this study, organic carbon (OC), total nitrogen (TN), stable carbon isotopic (δ13COC) and CuO reaction product compositions were used to identify the sources of organic matter (OM) and to quantify the relative importance of allochthonous and autochthonous contributions to the western Adriatic Sea, Italy. Suspended particulate material (195 samples) and surficial sediments (0–1 cm, 70 samples) from shallow cross-shelf transects were collected in February and May 2003, respectively. Vertical water column profiles were acquired along the same transects. Data include depth, potential temperature, salinity, density and chlorophyll fluorimetry.Along the western Adriatic shelf in the near-shore region, the phytoplankton growth was influenced by dynamics of the buoyant plumes from the Po and Appennine rivers. A small amount of very fine terrigenous material remained suspended within the coastal current and was exported southward along the shelf to the slope. High variability in the bulk composition was detected in the Po prodelta surficial sediments, whereas the western Adriatic shelf, although a larger area, exhibited a narrower range of values.A significant decoupling was observed between suspended particles in the water column and surficial deposits. The organic material collected in the water column was compositionally heterogeneous, with contributions from marine phytoplankton, riverine–estuarine phytoplankton and soil-derived OM. Frequent physical reworking of surficial sediments likely leads to the efficient oxidation of marine OC, resulting in the observed accumulation and preservation of refractory soil-derived OC delivered by the Po and Appennine rivers.  相似文献   
6.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   
7.
A series of hand-picked vitrinite samples from the Lower Kittanning Seam, Pennsylvania have been examined using quantitative pyrolysis-gas chromatography. These vitrinites ranged in rank from 0.59 to 1.71% reflectance, a rank range from high volatile C bituminous to low volatile bituminous. High molecular weight pyrolysis products included alkyl aromatic and phenolic compounds. Attempts have been made to correlate the pyrolysis product composition to rank parameters including vitrinite reflectance, volatile matter yield, carbon content, atomic H/C ratio and Rock-Eval determined Tmax. Total yield of phenols was found to be strongly and inversely rank related. A clear relationship between C8 alkyl-benzene yield and rank was not found for the sample set.  相似文献   
8.
9.
Diagenetic changes are difficult to distinguish from variations in sources of organic matter to sediments. Organic geochemical comparisons of samples of wood, bark, and needles from a white spruce (Picea glauca) living today and one buried for 10,000 years in lake sediments have been used to identify the effects of diagenesis on vascular plant matter. Important biogeochemical changes are evident in the aged spruce components, even though the cellular structures of the samples are well preserved. Concentrations of total fatty acids dramatically diminish; unsaturated and shorter chainlength components are preferentially lost from the molecular distributions. Concentrations of total alcohols are similar in the modern and 10,000-year-old wood and bark but markedly lowered in the aged needles. Hydrocarbon concentrations and distributions show little diagenetic change in the 10,000-year-old plant materials. Cellulose components in the wood decrease relative to lignin components, although both types of materials remain in high concentration in comparison to other organic components. Aromatization of abietic acid proceeds more rapidly in buried spruce wood than in bark; retene is the dominant polyaromatic hydrocarbon in the aged wood. In contrast to the variety of changes evident in molecular compositions, neither 13C values nor C/N ratios differ significantly in the bulk organic matter of modern and aged spruce components.  相似文献   
10.
A new method for analysis of acidic polar compounds, is described and discussed. It allows the simultaneous quantification of carboxylic acids, phenols and carbazoles and combines accuracy with a short turnaround time, a requirement strictly necessary for industrial applications. Routinely use of this methodology (more than 50 applications in many different sedimentary basins) has supplied many important pieces of information about oil origin, maturity, biodegradation and, in particular, has allowed to define a molecular migration index (MMI), based on relative abundance of phenol and alkyl phenols. The combination of well-established geochemical tools focused on saturated and aromatic fractions (such as biomarkers, compound specific isotope ratio analysis, and GC fingerprinting) with this methodology results in the definition of an integrated interpretative sequence. This last enhances the quality of interpretations through cross-checks and permits a better exploitation of oil samples by using also their less explored fraction, i.e. the polar compounds. Application results of this methodology are only shortly mentioned in this paper, which is mainly focused on analytical aspects. The results will be more extensively discussed in a future publication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号